Publications

From 2018 (Clear Search)

2018
Publication Details
  • The 23rd ACM Symposium on Access Control Models & Technologies (SACMAT)
  • Jun 13, 2018

Abstract

Close
Devices with embedded sensors are permeating the computing landscape, allowing the collection and analysis of rich data about individuals, smart spaces, and their interactions. This class of de- vices enables a useful array of home automation and connected workplace functionality to individuals within instrumented spaces. Unfortunately, the increasing pervasiveness of sensors can lead to perceptions of privacy loss by their occupants. Given that many instrumented spaces exist as platforms outside of a user’s control—e.g., IoT sensors in the home that rely on cloud infrastructure or connected workplaces managed by one’s employer—enforcing access controls via a trusted reference monitor may do little to assuage individuals’ privacy concerns. This calls for novel enforcement mechanisms for controlling access to sensed data. In this paper, we investigate the interplay between sensor fidelity and individual comfort, with the goal of understanding the design space for effective, yet palatable, sensors for the workplace. In the context of a common space contextualization task, we survey and interview individuals about their comfort with three common sensing modalities: video, audio, and passive infrared. This allows us to explore the extent to which discomfort with sensor platforms is a function of detected states or sensed data. Our findings uncover interesting interplays between content, context, fidelity, history, and privacy. This, in turn, leads to design recommendations regarding how to increase comfort with sensing technologies by revisiting the mechanisms by which user preferences and policies are enforced in situations where the infrastructure itself is not trusted.
Publication Details
  • ACM Intl. Conf. on Multimedia Retrieval (ICMR)
  • Jun 11, 2018

Abstract

Close
Massive Open Online Course (MOOC) platforms have scaled online education to unprecedented enrollments, but remain limited by their rigid, predetermined curricula. Increasingly, professionals consume this content to augment or update specific skills rather than complete degree or certification programs. To better address the needs of this emergent user population, we describe a visual recommender system called MOOCex. The system recommends lecture videos {\em across} multiple courses and content platforms to provide a choice of perspectives on topics. The recommendation engine considers both video content and sequential inter-topic relationships mined from course syllabi. Furthermore, it allows for interactive visual exploration of the semantic space of recommendations within a learner's current context.

Abstract

Close
An enormous amount of conversation occurs online every day, including on chat platforms where multiple conversations may take place concurrently. Interleaved conversations lead to difficulties in not only following discussions but also retrieving relevant information from simultaneous messages. Conversation disentanglement aims to separate overlapping messages into detached conversations. In this paper, we propose to leverage representation learning for conversation disentanglement. A Siamese Hierarchical Convolutional Neural Network (SHCNN), which integrates local and more global representations of a message, is first presented to estimate the conversation-level similarity between closely posted messages. With the estimated similarity scores, our algorithm for Conversation Identification by SImilarity Ranking (CISIR) then derives conversations based on high-confidence message pairs and pairwise redundancy. Experiments were conducted with four publicly available datasets of conversations from Reddit and IRC channels. The experimental results show that our approach significantly outperforms comparative baselines in both pairwise similarity estimation and conversation disentanglement.
Publication Details
  • DIS 2018
  • Jun 1, 2018

Abstract

Close
Conversational agents stand to play an important role in supporting behavior change and well-being in many domains. With users able to interact with conversational agents through both text and voice, understanding how designing for these channels supports behavior change is important. To begin answering this question, we designed a conversational agent for the workplace that supports workers’ activity-journaling and self-learning through reflection. Our agent, named Robota, combines chat-based communication as a Slack Bot and voice interaction through a personal device using a custom Amazon Alexa Skill. Through a 3-week controlled deployment, we examine how voice-based and chat-based interaction affect workers’ reflection and support self-learning. We demonstrate that, while many current technical limitations exist, adding dedicated mobile voice interaction separate from the already busy chat modality may further enable users to step back and reflect on their work. We conclude with discussion of the implications of our findings to design of workplace self-tracking systems specifically and to behavior-change systems in general.
Publication Details
  • International Conference on Robotics and Automation
  • May 21, 2018

Abstract

Close
Convolutional Neural Networks (CNN) have successfully been utilized for localization using a single monocular image [1]. Most of the work to date has either focused on reducing the dimensionality of data for better learning of parameters during training or on developing different variations of CNN models to improve pose estimation. Many of the best performing works solely consider the content in a single image, while the context from historical images is ignored. In this paper, we propose a combined CNN-LSTM which is capable of incorporating contextual information from historical images to better estimate the current pose. Experimental results achieved using a dataset collected in an indoor office space improved the overall system results to 0.8 m & 2.5° at the third quartile of the cumulative distribution as compared with 1.5 m & 3.0° achieved by PoseNet [1]. Furthermore, we demonstrate how the temporal information exploited by the CNN-LSTM model assists in localizing the robot in situations where image content does not have sufficient features.
Publication Details
  • International Conference on Robotics and Automation
  • May 21, 2018

Abstract

Close
In this paper, we propose a novel solution to optimize the deployment of (RF) beacons for the purpose of indoor localization. We propose a system that optimizes both the number of beacons and their placement in a given environment. We propose a novel cost-function, called CovBSM, that allows to simultaneously optimize the 3-coverage while maximizing the beacon spreading. Using this cost function, we propose a framework that maximize both the number of beacons and their placement in a given environment. The proposed solution accounts for the indoor infrastructure and its influence on the (RF) signal propagation by embedding a realistic simulator into the optimization process.
Publication Details
  • Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
  • Apr 21, 2018

Abstract

Close
Massive Open Online Course (MOOC) platforms have scaled online education to unprecedented enrollments, but remain limited by their rigid, predetermined curricula. This paper presents MOOCex, a technique that can offer a more flexible learning experience for MOOCs. MOOCex can recommend lecture videos across different courses with multiple perspectives, and considers both the video content and also sequential inter-topic relationships mined from course syllabi. MOOCex is also equipped with interactive visualization allowing learners to explore the semantic space of recommendations within their current learning context. The results of comparisons to traditional methods, including content-based recommendation and ranked list representation, indicate the effectiveness of MOOCex. Further, feedback from MOOC learners and instructors suggests that MOOCex enhances both MOOC-based learning and teaching.

T-Cal: Understanding Team Conversation Data with Calendar-based Visualization

Publication Details
  • Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
  • Apr 21, 2018

Abstract

Close
Understanding team communication and collaboration patterns is critical for improving work efficiency in organizations. This paper presents an interactive visualization system, T-Cal, that supports the analysis of conversation data from modern team messaging platforms (e.g., Slack). T-Cal employs a user-familiar visual interface, a calendar, to enable seamless multi-scale browsing of data from different perspectives. T-Cal also incorporates a number of analytical techniques for disentangling interleaving conversations, extracting keywords, and estimating sentiment. The design of T-Cal is based on an iterative user-centered design process including field studies, requirements gathering, initial prototypes demonstration, and evaluation with domain users. The resulting two case studies indicate the effectiveness and usefulness of T-Cal in real-world applications, including student group chats during a MOOC and daily conversations within an industry research lab.
Publication Details
  • CHI 2018
  • Apr 21, 2018

Abstract

Close
This paper describes the development of a multi-sensory clubbing experience which was deployed during two a two-day event within the context of the Amsterdam Dance Event in October 2016 in Amsterdam. We present how the entire experience was developed end-to-end and deployed at the event through the collaboration of several project partners from industries such as art and design, music, food, technology and research. Central to the system are smart textiles, namely wristbands equipped with Bluetooth LE sensors which were used to sense people attending the dance event. We describe the components of the system, the development process, collaboration between the involved entities and the event itself. To conclude the paper, we highlight insights gained from conducting a real world research deployment across many collaborators and stakeholders.
Publication Details
  • CHI 2018
  • Apr 21, 2018

Abstract

Close
Effective communication of activities and progress in the workplace is crucial for the success of many modern organizations. In this paper, we extend current research on workplace communication and uncover opportunities for technology to support effective work activity reporting. We report on three studies: With a survey of 68 knowledge workers followed by 14 in-depth interviews, we investigated the perceived benefits of different types of progress reports and an array of challenges at three stages: Collection, Composition, and Delivery. We show an important interplay between written and face-to-face reporting, and highlight the importance of tailoring a report to its audience. We then present results from an analysis of 722 reports composed by 361 U.S.-based knowledge workers, looking at the influence of the audience on a report’s language. We conclude by discussing opportunities for future technologies to assist both employees and managers in collecting, interpreting, and reporting progress in the workplace.
Publication Details
  • IUI 2018
  • Mar 7, 2018

Abstract

Close
Activity recognition is a core component of many intelligent and context-aware systems. In this paper, we present a solution for discreetly and unobtrusively recognizing common work activities above a work surface without using cameras. We demonstrate our approach, which utilizes an RF-radar sensor mounted under the work surface, in two work domains; recognizing work activities at a convenience-store counter (useful for post-hoc analytics) and recognizing common office deskwork activities (useful for real-time applications). We classify seven clerk activities with 94.9% accuracy using data collected in a lab environment, and recognize six common deskwork activities collected in real offices with 95.3% accuracy. We show that using multiple projections of RF signal leads to improved recognition accuracy. Finally, we show how smartwatches worn by users can be used to attribute an activity, recognized with the RF sensor, to a particular user in multi-user scenarios. We believe our solution can mitigate some of users’ privacy concerns associated with cameras and is useful for a wide range of intelligent systems.
Publication Details
  • Multimedia Modeling 2018
  • Feb 5, 2018

Abstract

Close
This paper examines content-based recommendation in domains exhibiting sequential topical structure. An example is educational video, including Massive Open Online Courses (MOOCs) in which knowledge builds within and across courses. Conventional content-based or collaborative filtering recommendation methods do not exploit courses' sequential nature. We describe a system for video recommendation that combines topic-based video representation with sequential pattern mining of inter-topic relationships. Unsupervised topic modeling provides a scalable and domain-independent representation. We mine inter-topic relationships from manually constructed syllabi that instructors provide to guide students through their courses. This approach also allows the inclusion of multi-video sequences among the recommendation results. Integrating the resulting sequential information with content-level similarity provides relevant as well as diversified recommendations. Quantitative evaluation indicates that the proposed system, \textit{SeqSense}, recommends fewer redundant videos than baseline methods, and instead emphasizes results consistent with mined topic transitions.

Rethinking Summarization and Storytelling for Modern Social Multimedia

Publication Details
  • Multimedia Modeling
  • Feb 5, 2018

Abstract

Close
Traditional summarization initiatives have been focused on specific types of documents such as articles, reviews, videos, image feeds, or tweets, a practice which may result in pigeonholing the summarization task in the surrounding of modern, content-rich multimedia collections. Consequently, much of the research to date has revolved around mostly toy problems in narrow domains and working on single-source media types. We argue that summarization and story generation systems need to refocus the problem space in order to meet the information needs in the age of user-generated content in different formats and languages. Here we create a framework for flexible multimedia storytelling. Narratives, stories, and summaries carry a set of challenges in big data and dynamic multi-source media that give rise to new research in spatial-temporal representation, viewpoint generation, and explanation.
Publication Details
  • arXiv
  • Jan 24, 2018

Abstract

Close
Tutorials are one of the most fundamental means of conveying knowledge. Ideally when the task involves physical or digital objects, tutorials not only describe each step with text or via audio narration but show it as well using photos or animation. In most cases, online tutorial authors capture media from handheld mobile devices to compose these documents, but increasingly they use wearable devices as well. In this work, we explore the full life-cycle of online tutorial creation and viewing using head-mounted capture and displays. We developed a media-capture tool for Google Glass that requires minimal attention to the capture device and instead allows the author to focus on creating the tutorial's content rather than its capture. The capture tool is coupled with web-based authoring tools for creating annotatable videos and multimedia documents. In a study comparing standalone (camera on tripod) versus wearable capture (Google Glass) as well as two types of multimedia representation for authoring tutorials (video-based or document-based), we show that tutorial authors have a preference for wearable capture devices, especially when recording activities involving larger objects in non-desktop environments. Authors preferred document-based multimedia tutorials because they are more straightforward to compose and the step-based structure translates more directly to explaining a procedure. In addition, we explored using head-mounted displays (Google Glass) for accessing tutorials in comparison to lightweight computing devices such as tablets. Our study included tutorials recorded with the same capture methods as in our access study. We found that although authors preferred head-mounted capture, tutorial consumers preferred video recorded by a camera on tripod that provides a more stable image of the workspace. Head-mounted displays are good for glanceable information, however video demands more attention and our participants made more errors using Glass than when using a tablet, which was easier to ignore. Our findings point out several design implications for online tutorial authoring and access methods.