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Abstract

Current approaches to pose estimation and tracking can
be classified into two categories: generative and discrimi-
native. While generative approaches can accurately deter-
mine human pose from image observations, they are compu-
tationally expensive due to search in the high dimensional
human pose space. On the other hand, discriminative ap-
proaches do not generalize well, but are computationally
efficient. We present a hybrid model that combines the
strengths of the two in an integrated learning and infer-
ence framework. We extend the Gaussian process latent
variable model (GPLVM) to include an embedding from
observation space (the space of image features) to the la-
tent space. GPLVM is a generative model, but the inclu-
sion of this mapping provides a discriminative component,
making the model observation driven. Observation Driven
GPLVM (OD-GPLVM) not only provides a faster inference
approach, but also more accurate estimates (compared to
GPLVM) in cases where dynamics are not sufficient for the
initialization of search in the latent space.

We also extend OD-GPLVM to learn and estimate poses
from parameterized actions/gestures. Parameterized ges-
tures are actions which exhibit large systematic variation
in joint angle space for different instances due to differ-
ence in contextual variables. For example, the joint angles
in a forehand tennis shot are function of the height of the
ball (Figure 2). We learn these systematic variations as a
function of the contextual variables. We then present an
approach to use information from scene/objects to provide
context for human pose estimation for such parameterized
actions.

1. Introduction

Human pose tracking is a challenging problem because
of occlusion, a high dimensional search space and high vari-
ability in people’s appearance due to shape and clothing
variations. There is a wide range of approaches to human
pose tracking which can be broadly divided into two cate-

gories:

e Discriminative Approaches: Discriminative methods
employ a parametric model of posterior probabilities
of pose and learn the parameters from the training data.
The parametric model is generally an ambiguous map-
ping from observation space to pose space.

e Generative Approaches: Generative methods model
the joint probability distribution of hypothesis and ob-
servation using class conditional densities (image like-
lihoods P(I]Y")) and class prior probabilities (P(Y")).
Such approaches search the pose-space to find the pose
that best explains the image observations.

Discriminative approaches involve learning the mapping
from feature/observation space (X) to the pose space ())).
This mapping (¢ : X — ))) may not be simple because it
is generally ambiguous (two different poses can look simi-
lar in some views). Due to this inherent ambiguity, multi-
ple functions or a mixture of experts model have been used
for representing the mapping from X to ). On the other
hand, the inverse problem of generating image observations
given a pose vector is a well defined problem. One can eas-
ily build a mapping from pose space to observation space
which can be used as the likelihood model in the generative
approach. Discriminative approaches are, however, faster
compared to generative approaches, which require search
in the high-dimensional pose space.

While either searching or learning a prior model in a
high dimensional space is expensive, dimensionality reduc-
tion techniques can be used to embed the high-dimensional
pose space in a lower dimensional manifold. The Gaussian
process latent variable model (GPLVM) [13] is a generative
approach which models the pose-configuration space ()) as
low dimensional manifold and the search for the best con-
figuration is performed in this low-dimensional latent space
(Z). GPLVM is a smooth! mapping from the latent space
to the pose space. It keeps latent points far apart if their
corresponding poses lie far apart. An extension to GPLVM,

Ithe points in latent space which are ‘close’ will be mapped to points
in pose space which are ‘close’.
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Figure 1. Comparison of mappings in the three gaussian models.

called Back Constrained GPLVM (BC-GPLVM), was in-
troduced in [14]. By having an additional inverse mapping
from the pose space to the latent space, BC-GPLVM also
preserves local distances in the pose space.

Both GPLVM and BC-GPLVM determine the low di-
mensional embedding of the pose space regardless of the
distances between poses in the observation/feature space.
It is important to consider distances in observation space
since the cost function that drives the search for the pose is
based on distances and gradients in the observation space.
We introduce observation driven GPLVM (OD-GPLVM),
which has a smooth mapping from the observation space to
the latent space in addition to the mapping from the latent
space to the pose space (See Figure 1). OD-GPLVM is a
hybrid model that combines the strengths of both generative
and discriminative models. The mapping from observation
space to latent space allows us to estimate the latent posi-
tions directly from observations. The best pose can then
be searched for in the neighborhood of the estimated point
in latent space. Thus, OD-GPLVM has better initialization
based on observations and is not limited to motion dynam-
ics within the training data. We also extend the Gaussian
Process Dynamical Model (GPDM) [31] in a similar man-
ner to include an embedding from joint space (X X Z) to
the latent space.

While approaches such as GPLVM and OD-GPLVM can
be used to find a low-dimensional embedding of pose space

Figure 2. Parameterized Actions: A tennis forehand shot is an ex-
ample of a parameterized action. The trajectory in pose space is a
function of ball height(as shown in the example) and the direction
the ball is to be hit. The parameter can be determined not only us-
ing the pose observations, but also the ball position and opponent’s
position (Contextual Features)

for an action, it has been observed that such embeddings
often model multiple instances of the same action as very
different trajectories in the latent space. Such a variation in
latent/joint-angle spaces is either due to differences in styles
or environmental conditions (See Figure 2). We describe
how to extend our approach to model systematic variations
in pose-space for parameterized actions. In addition to us-
ing features from human silhouettes, our model also uses
contextual information from the scene and objects to esti-
mate human pose.

2. Related Work

Human pose estimation has been studied extensively in
computer vision. Generative approaches [8, 23] search
in the high dimensional pose space to determine the pose
which best explains image observations. This is generally
posed as a non-linear optimization problem. Given an ini-
tial estimate, approaches such as gradient descent can be
used for optimization. However, such approaches are easily
trapped in local minima. Approaches such as particle filter-
ing [11] have been used to overcome this problem. How-
ever, particle filtering fails to scale well in high dimensional
spaces, such as human pose, because of the large number of
particles required for effective representation.

A few attempts have been made to reduce the high-
dimensionality of pose space using principal component
analysis [22]. Linear subspace models are, however, inap-
propriate for modeling the space of human poses due to its
underlying non-linearity. Other approaches, such as [10],
either tend to overfit the data or require large amounts of
data for training. One can, instead, use non-linear dimen-
sionality reduction approaches such as Isomaps [26] or LLE
(local linear embedding) [20, 4]. These approaches, how-



ever, lack mappings from the embedded space to the data
space, which is important for a generative search frame-
work.

Lawrence et al. [13] introduced GPLVM, which not
only determines a low dimensional embedding but also
a mapping from this embedding (latent space) to pose
space. Urtasun et al. [29] proposed an approach to esti-
mate human pose using SGPLVM [6], where each input
dimension is scaled independently to account for different
variances of different data dimensions. Other approaches
such as GPDM [28], BC-GPLVM [9], LL-GPLVM [30],
SLVM [12] and LELVM [17] have also been used for hu-
man body tracking. All these approaches use either deter-
ministic optimization [29] or particle filtering to search for
the best pose [16]. While the initialization approach based
on search in latent space proposed in [29] is very expen-
sive, other initialization approaches such as in [28] rely
too heavily on learned dynamics. Our approach provides an
effective, more computationally efficient method for pose
estimation and balances the utilization of image features
and dynamics. It computes the embedding by considering
image observations in conjunction with pose data. This is
achieved by adding a mapping > from observation space to
latent space. This mapping provides natural initialization
points where features from observations are used to obtain
the starting point for search in the latent space. Thus, our
approach avoids expensive initialization as well as unreli-
able dynamics.

Some approaches such as [3, 21] use a shared latent
space for observation and pose. The mapping in such a
case is from latent space to observation space. The map-
ping used in our approach, from observation space to latent
space, is significant for two reasons: (1) Such a mapping
is a prime requirement for the discriminative flavor which
provides faster speeds and has been used in [12]. (2) Our
mapping ensures that two points close in observation space
will be close in latent space whereas in [3] the other map-
ping ensures two points far in observation space will be far
in latent space(which was already true since they were far
in pose and hence already far in latent space).

The joint angle trajectories in many actions show sys-
tematic variations with respect to environmental variables.
Wilson et al. [33] introduced an approach to represent and
recognize parameterized actions that exhibit systematic spa-
tial variations. We present an approach to human pose
tracking by modeling the variation in dynamics with re-
spect to location of an object being acted on and other en-
vironmental variables. Such variations cannot be modeled
as stylistic variations [5, 32], since they are dependent on
external contextual variables and their variational magni-
tudes are larger. Urtasun et al. [27] use a golf club tracker
to provide cues for human hand tracking. Their approach is

2While approaches such as [12] also learn a mapping from observa-
tion space to latent space after learning the embedding, their mapping is
generally discontinuous because the embedding is learned independent of
distances in observation space.

complementary to ours; they use the golf club as a source
of discriminative features to track the hand and estimate its
3D locations. Our approach, on the other hand, models the
variations in human pose with respect to scene and object
features. While contextual information has been used to im-
prove object and action recognition [7, 18, 19], to the best of
our knowledge, this is the first attempt to apply contextual
information to human pose estimation.

3. Observation Driven GPLVM

GPLVM is a probabilistic, non-linear, latent variable
model. It constructs a smooth mapping from latent space
to pose space; hence, pose configuration can be recovered if
the corresponding latent position is known. While GPLVM
has been used for pose-tracking, it suffers from the draw-
back that two points may be far from each other in latent
space even though the observations/poses are very similar.
Preservation of local distance in observation space is im-
portant for gradient-descent based approaches as it leads to
smoother cost functions. It is also important for sampling
based approaches as it brings two points similar in observa-
tions within sampling range of each other.

Our proposed model, OD-GPLVM, overcomes this by
creating two smooth mappings, one from observation space
to latent space and the other from latent space to pose space.
Such a mapping pair offers two benefits: (a) It provides a
better and natural initialization for search in the latent space.
The mapping from observation space to latent space pro-
vides the starting point for search in latent space. This ini-
tialization approach is more effective than the one employed
in GPLVM or BC-GPLVM because it is fast and based on
observation, rather than on smoothness or a constraint of
“small” motion between frames. (b) Such a mapping not
only preserves local distances in pose space but also pre-
serves local distances in observation space. Therefore, two
latent points which generate similar observations tend to lie
close to each other.

Let Y = [y1,..,yn]T be the poses of the training
dataset. Similarly, let X = [z1,.., 2] represent the ob-
servations in feature space and Z = [z1, .., zy| be the cor-
responding positions in the latent space. Given, a train-
ing dataset (X,Y’) we want to compute the model M =
{2z}, Prp,Por}, where @1, p and Do, are the
parameters of the two mappings from latent space to pose
space and observation space to latent space, respectively.
The posterior of M, P(M|Y, X), can be decomposed using
Bayes rule as

P(M|Y,X) o P(Y|M,X)P(M|X)
= P(Y|M)P(M|X)
P(Y|Z,®p.p)P(Z|X,®0..)P(®or.1|X)

Under the Gaussian process model, the conditional den-
sity for the data is multivariate Gaussian and can be written
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where K7 is the kernel matrix and D is the dimensionality
of the pose space. The elements of the kernel matrix are
given by a kernel function, Kz, = k(z;,2;). We use a
Radial Basis Function (RBF) based kernel function of the
form:
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where § is the Kronecker delta function. Similarly, the con-
ditional density P(Z|X, ©) can also be broken down as
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where K x is the kernel matrix and () is the dimensionality
of the latent space. The elements of the kernel matrix are
given by a kernel function, Kx,, = k(x;,z;). We again
use RBF kernel given by:
_T%(m — aj)ia(x;i — 25)") + Baba, z
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We assume a uniform prior on the parameters of the map-
ping from X — Z. Therefore, the log posterior of M, L, is
given by

k(zi, ;) = csexp(
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‘We need to optimise the likelihood with respect to the latent
positions and various parameters. We compute the gradients
of (5) with respect to Z using the chain rule
—1
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We optimize (5) using a non-linear optimizer such as scaled
conjugate gradient(SCG). The optimization is performed
similarly to the optimization in [14]. For initialization, we
obtain Z using principal component analysis (PCA). We
then use an iterative approach where the parameters and la-
tent positions are updated using the gradients.
3.1. Inference Process

(6)

GPLVM is a generative model, while the mapping from
observation space to latent space provides a discriminative
flavor to the model. To infer a pose in a frame, we first ex-
tract image features. The features are based on shape con-
text histograms and are similar to those used in [1].

Based on the features, we use the discriminative map-
ping to obtain the proposal distribution ¢(z|z). This pro-
posal distribution is used to obtain the samples in the la-
tent space. Sampling is done using the importance sampling
procedure. Samples are evaluated based on posterior prob-
abilities defined by:

Py, 2|, M) o< P(Ily, z, M)P(y, 2| M)
= PUly)Pylz, M)P(zM) ()

The first term in the equation is the image likelihood given
a hypothesized pose. We use an edge based likelihood
model which uses a distance transform, similar to one pro-
posed in [15]. The second term represents the probabil-
ity of the hypothesized pose given a hypothesized latent
position. From [13], we know P(y|z, M) is given by
Ny, £(2),0(2)) where:
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3.2. Using Multiple Regressors

The mapping from observation space to latent space
is generally ambiguous. Many pose configurations lead
to similar observations and hence the inherent ambiguity.
Such ambiguity generally disappears in the tracking frame-
work due to temporal consistency constraints (Section 3.3).
A mixture of experts regressors [24] can be used to over-
come this problem for static image analysis. In this modi-
fied model, the training process is modified to an EM-based
approach similar to [25].

3.3. Extension to Tracking

GPDM is a latent variable model which consists of a low
dimensional latent space, a mapping from latent space to
data space and a dynamical model in the latent space. Ob-
servation driven GPLVM also provides a natural extension
to GPDM. Instead of only having a mapping from the obser-
vation space X to pose space, we also include a mapping,
1 X X Z — Z. In a tracking framework, the latent posi-
tion at time ¢ is given by

2t =zt 271 4 noise (8)

Using such a mapping, we can again regress to the cur-
rent latent position using current observations and the previ-
ous frame’s latent position. The new log-posterior function,
L*, is similar to L except that K x is replaced by K x and
each element is given by

k(w2 w,2) = acap(GH (2 = z)w(z — )"
+(zi — z)w (zi — 2)7)) + Boxz
The new gradient with respect to Z can be computed as:
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The inference procedure in the tracking framework is sim-
ilar to the inference process explained previously. We ob-
tain the proposal distribution using the current observations
2! and previous frame latent position z'~!. Based on this
proposal distribution, the samples which are evaluated are
constructed using importance sampling.



3.4. Comparison With Back-constrained GPLVM

Lawrence et. al [14] introduced BC-GPLVM as a variant
of GPLVM which preserves local distances of pose space
under dimensionality reduction. While GPLVM tries to pre-
serve dissimilarity (no two points ’far apart’ in pose space
can lie "close together’ in latent space), there is nothing that
prevents two points lying close in the pose space from being
far apart in the latent space. BC-GPLVM tackles this prob-
lem by having another smooth mapping from pose space to
latent space. Therefore, by creating two smooth mappings
local distances are preserved in BC-GPLVM.

On the other hand, by taking into consideration the ob-
servation space during the dimensionality reduction and
having a smooth mapping from observation-space to latent-
space, OD-GPLVM preserves local distances implicitly.
Two points which are close in the pose space should lie
close in the observation space as well, and by having a
smooth mapping from observation space to latent space, it
is ensured that the two points lie close in latent space as
well. Thus, while BC-GPLVM preserves local distances of
pose space, OD-GPLVM preserves local distances of both
pose space and observation space.

4. Using Context for Pose Estimation

OD-GPLVM can be used to learn an activity manifold
for the pose estimation problem. Consider an activity like
sitting (See Figure 3). The execution of such an activity
and the trajectory in joint angle space is determined by a
few contextual variables (the height of the surface to sit on,
in this case). Many activities show a systematic variation
in their execution with respect to external variables such as
surface height. Using non-linear dimensionality reduction
techniques is not appropriate without modeling these vari-
ations. We extend our approach to model these variations
and use observations/features from the scene and objects to
estimate the contextual variables, followed by human pose
estimation. For example, in the case shown in Figure 3, us-
ing the features from the chair/stool can be used to provide
strong cues on the height parameter. Using the estimated
height and current pose observations, one can predict the
possible latent point in the latent space.

4.1. The Model

We need to model the variations in pose-space as a func-
tion of a contextual variable. While one can learn multiple
models for different values of the contextual variables, we
use a single latent space to represent all the possible poses
for different values of contextual variables. We use OD-
GPDM with multiple mappings from observation space to
latent space for modeling the variations in parameterized ac-
tivity. A mapping from the observation space to latent space
is learned from an instance of the activity for a certain value
of the variable from the training dataset. For example, if
we have a training dataset of three possible sitting heights

(a)Chair (c) Ground

(b) StepStool

Figure 3. Joint angle variations for different parameter val-
ues(heights of sitting surfaces).

with the sitting objects being chair, step-stool and ground,
we will learn three mappings from observation space to la-
tent space, one for each height. Only a single mapping from
latent space to the pose space is used.

Figure 4 shows the graphical representation of the model
used for inference. Let x. represent contextual features and
x represent shape-context features from the silhouette. We
want to obtain an estimate of the probability distribution
P(z|z, 2., M). This distribution can then be used for im-
portance sampling and to evaluate the samples using the
equations described in section 3.1. Let 6 represent the con-
textual variables which are used to parameterize the activity
(for example, in case of sitting 6 corresponds to the height
of the sitting surface). We can then compute P(z|z, z., M)
as

P(z|z, e, M) > P(2(0,x, M)P(0]z,z) (10)
0

> P(zle, M) P(O]z,z.)  (11)
0

where My corresponds to the mapping for a particular value
of #. We use a discrete representation of the variable 6 based
on the instances used to learn the activity.

Contextual features z. are extracted from regions where
the objects are present. Human pose provides a prior on the
location of an object being interacted with. For example, in
the case of sitting, the location of the hip and knee joints
provide priors on the location of the surface on which the
person will sit. So, this leads us to a chicken-egg problem,
where the pose of a person can be used to extract features x.
and these features can be used to estimate the pose. We use
an iterative approach, where we re-compute the distribution
P(z|z, z., M) at every iteration to update the possible pose.

We use the same SCG method for learning the model as
before. However, since there are multiple mappings from
observation space to latent space, the log-posterior function
has terms for all mappings.

5. Experimental Results

We performed a series of experiments to evaluate our al-
gorithms. In the first set of experiments, we compared OD-



Figure 4. The Graphical Model for Inference

GPDM to GPLVM and GPDM. In the second set of experi-
ments, we trained our model for sitting, a parameterized ac-
tivity, and compare the performance of our algorithm with
and without the use of contextual information.

5.1. Observation Driven Models

We used the CMU-Mocap datset [2] for evaluating OD-
GPDM. Experiments were performed to evaluate the al-
gorithm’s performance on three activities: jumping-jack,
walking and climbing a ladder. Training requires both joint-
angles and the silhouette observations. In a few cases where
the observations were not provided in the dataset, animation
software was used to obtain the silhouettes.

Figure 6. Pose Tracking Results on Walking Activity using OD-
GPDM (Subject=35, Instance=05).

Figures 5 and 6 show the performance of OD-GPDM on
the jumping jack and walking activities. For the walking
activity, only the joint angles corresponding to the torso and
lower body are estimated. In all experiments, the tracking
algorithm was initialized using the closest observation in
the training dataset.

Quantitative: We compared the performance of OD-
GPDM to two tracking approaches: GPLVM with second
order dynamics [29] and GPDM [28]. The mean joint angle
error was calculated using the ground truth data. Figure 7(a)
compares the performance of OD-GPDM for the jumping
jack activity. While GPLVM and GPDM suffer from an
accumulation of tracking errors, OD-GPDM does not have
that problem due to less reliance on dynamics. Figure 7(b)
shows the mean error for three different activities. While
OD-GPDM outperforms GPLVM and GPDM in the jump-
ing jack and climbing activities, the performance is similar
for all three in the walking activity. OD-GPDM is compu-
tationally fast (upto 5fps on a Pentium 4) since the initial-

Comparison of Jumping Jack Video (Subject 13, Trial 29)
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Figure 7. Quantitative Evaluation: Comparison of OD-GPDM
with GPLVM (2nd Order Dynamics) and GPDM. (a) Frame-by-
frame comparison (b) Comparison for three activities. OD-GPDM
outperforms both the algorithms in the jumping jack activity.

ization of search is obtained using the mapping from obser-
vation space to latent space.

5.2. Context based GP Models

We trained our context driven model for the sitting ac-
tivity. As shown in the example of Figure 3, there are sys-
tematic variations in trajectories in joint-angles and latent
space for different heights of the sitting surfaces. The train-
ing dataset for sitting was taken from the CMU-Mocap data
and included instances with four different seat heights. Fig-
ure 8 shows the latent space after training our model. The
four trajectories, shown by different colored points, corre-
spond to four different instances of sitting.

For testing, videos were obtained of subjects sitting on
chair, stepstool and the ground. Figure 9 shows the perfor-
mance of context driven OD-GPDM for subject 1. Ground
truth was manually hand-labeled to compare the perfor-
mance of OD-GPDM with and without using contextual
information(Figure 10). It can be seen that use of contex-
tual information improves the performance of the algorithm.



Figure 5. Pose Tracking Results on Jumping Jack activity using OD-GPDM (Subject=13, Instance=29)

Figure 8. Parameterized Actions: Latent Space for Sitting Action.
The four trajectories correspond to sitting on surfaces of different
heights. Yellow corresponds to sitting on a bar stool, Red corre-
sponds to sitting on a chair, Magenta corresponds to a sitting on
a stepstool and Blue corresponds to sitting on the ground. Our
model was able to generalize pose variations over different sur-
faces, the poses corresponding to higher sitting surfaces occur on
the left and the poses for lower sitting surfaces on the right.

Figure 11(a) and (b) shows the performance on other sub-
jects with sitting surfaces being the ground and step stool
respectively.

6. Conclusion

We presented an approach to extend GPLVM and GPDM
by including an embedding from observation space to la-
tent space. Such an embedding preserves local distances
in both the observation space and the pose space. Our ap-
proach provides an effective and computationally efficient
approach for pose estimation. Unlike previous approaches,
it emphasizes the importance of image observation in pre-
diction of latent positions and tries to optimally balance
reliance on image features and dynamics. We then intro-
duced an extension to our model, OD-GPDM, to include

— — i Goer
VA in Context \/\ —— Without Contet]

<
L

Mean Joint Error(Pixels)
Mean Joint Error(Pixels)
"

RSN
B VA V'

\4

10 1
Frame #

(a) Step Stool (b) Chair

Figure 10. Quantitative Evaluation: Comparison of OD-GPDM
with and without contextual information on Subject 1.
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Figure 11. Tracking Results on other subjects.

contextual information. The joint angle trajectories in many
actions show variations with respect to environmental and
contextual variables. Instead of learning a separate model
for different (quantized) values of the contextual variables,
we presented an approach that models these variations and
uses a single latent space to embed all pose variations due to
differences in contextual variables. We also demonstrated
the importance of contextual information in prediction of
poses in such parameterized actions.
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