Image-Based User Profiling of Frequent and Regular Venue Categories

Abstract

The availability of mobile access has shifted social media use. With that phenomenon, what users shared on social media and where they visited is naturally an excellent resource to learn their visiting behavior. Knowing visit behaviors would help market survey and customer relationship management, e.g., sending customers coupons of the businesses that they visit frequently. Most prior studies leverage meta-data e.g., check- in locations to profile visiting behavior but neglect important information from user-contributed content, e.g., images. This work addresses a novel use of image content for predicting the user visit behavior, i.e., the frequent and regular business venue categories that the content owner would visit. To collect training data, we propose a strategy to use geo-metadata associated with images for deriving the labels of an image owner’s visit behavior. Moreover, we model a user’s sequential images by using an end-to-end learning framework to reduce the optimization loss. That helps improve the prediction accuracy against the baseline as demonstrated in our experiments. The prediction is completely based on image content that is more available in social media than geo-metadata, and thus allows coverage in profiling a wider set of users.