

m-Links: An Infrastructure for Very Small Internet Devices

Bill N. Schilit1, Jonathan Trevor1, David M. Hilbert1, Tzu Khiau Koh2

1 Fuji-Xerox Palo Alto Laboratory
3400 Hillview Avenue

Palo Alto, CA 94304 USA
+1 650 813 7220

{lastname}@pal.xerox.com

2Xerox Singapore Software Center
16 Science Park Drive #02-04

The Pasteur, Singapore 118227
kohtk@pal.xerox.com

ABSTRACT
In this paper we describe the Mobile Link (m-Links) infrastructure
for utilizing existing World Wide Web content and services on
wireless phones and other very small Internet terminals. Very small
devices, typically with 3-20 lines of text, provide portability and
other functionality while sacrificing usability as Internet terminals.
In order to provide access on such limited hardware we propose a
small device web navigation model that is more appropriate than
the desktop computer’s web browsing model. We introduce a
middleware proxy, the Navigation Engine, to facilitate the
navigation model by concisely displaying the Web’s link (i.e.,
URL) structure. Because not all Web information is appropriately
“linked,” the Navigation Engine incorporates data-detectors to
extract bits of useful information such as phone numbers and
addresses. In order to maximize program-data composibility,
multiple network-based services (similar to browser plug-ins) are
keyed to a link’s attributes such as its MIME type. We have built
this system with an emphasis on user extensibility and we describe
the design and implementation as well as a basic set of middleware
services that we have found to be particularly important.

Keywords
Wireless, wireless web, web phones, middleware, proxy.

1. INTRODUCTION
The future Internet will include huge numbers of smart phones and
other sub-palm-sized devices moving among wireless cells and
accessing multi-media content. If current trends continue, we may
see these devices outnumber traditional Internet terminals in the
near future. Very small devices share common characteristics:
small displays; limited input; lower bandwidth; slow processors;
and small memories. Moreover, such devices continue to evolve
further and further from the desktop computer platform on which
current Web infrastructure is based.

It is generally accepted that new Internet terminals should be able
to leverage the installed infrastructure of Web content and
services. A number of research projects and commercial products
have demonstrated ways to bring the desktop Web experience to
mobile devices (see related work). The basic mechanism is

transducing, or transforming content to take into account
limitations in bandwidth, color-depth and screen real estate. It is
our experience with one such transducing proxy, the Web
Digestor, which motivated this current research.

1.1 Experience With a Web Transducer
The Digestor [5] is an intelligent proxy that performs semantic
compression and layout modification of web pages for a PDA or
laptop. In other words, Digestor takes a web page and splits it into
multiple web pages (each better suited for the smaller display) and
adds new navigation links. The goal is to mimic the expert web
designer if they were faced with the task of re-authoring web pages
for PDAs. Digestor credibly transduced content for a range of
small device types but broke down on very small devices. The
problem is that transducing a desktop-sized UI into many pieces
for display on a smart phone-sized UI inevitably results in a much
more complicated structure that is difficult for users to understand
and navigate.

Trying to use Digestor on smart phones led us to re-examine the
desktop user’s web experience and the desire to support that
experience. We realized that much “browsing” involves following
links and reading, or more generally, navigating to information and
then using it. Moreover, we saw that activities performed on web
content included reading but also mailing, printing, saving, and
even translating. Such activities are well supported by the large UI
of the desktop computer, but not by the limited UI of small
devices. Returning our attention to small devices, we were
motivated then not to transform the web, but rather to factor the
web interaction.

Figure 1: Very small
wireless devices, such as
cell phones and PDAs,
are increasingly used as
Internet terminals.
However, their
extremely limited user
interfaces makes
leveraging existing Web
content and services a
challenge.

By “factor” we mean to take the integrated activity of following
links and reading (known as browsing) and divide it into two
activities: navigation and use. By adopting this new web
interaction model for small devices we both simplify the interaction
and also extend the capabilities of what can be done with web
content. For example, upon navigating to content it is now
possible to do much more than just read. We will explain the
benefits more fully through a scenario that describes the m-Links
system in use.

1.2 Usage Scenario
Pino, a solutions consultant, is traveling to a customer meeting. In
the taxi he hears a radio news story announcing a merger between
his customer’s main competitor and Acuson, Inc. Pino decides he
must learn more about this company and also bring information to
the meeting. He turns on his Internet phone but the stories at the
Wireless Wall Street Journal are too short and too general.

If Pino were back at the office, he would simply go to Acuson’s
corporate Web site, dig around, read the news announcements and
download and print out some of the Adobe Acrobat-format
product brochures—or even email or fax these over to his
customer. Instead, since he is in a taxi, he pulls up the m-Links site
on his phone’s micro-browser.

Since m-Links is a site navigation engine, Pino enters “acuson”
and is shown www.acuson.com as a matching site. (Pino could
have also used his history list or a search to arrive at the corporate
Web site). As the taxi navigates the city streets of Rome, Pino uses
m-Links’ Navigation Engine to dig into the web site (see Figure
2a).

Pino sees the Acuson web site somewhat differently than it appears
on his desktop computer. First, he doesn’t see the content of the
site, but rather a “skeleton view” showing the links. He also sees
“data-detected” links representing phone numbers and addresses
found on the page (Figure 2a). Selecting a phone number link
would call that number.

Pino, however, is after product literature so is looking for that area
of the web site. In Figure 2a he sees each HTML page link
preceded by a folder icon (and as shown in Figure 2c each non-

HTML file is preceded by a document icon). Since Pino is digging
around the site this is just what he wants. He moves from the main
page (Figure 2a) to the product Literature web page (Figure 2b)
and follows that link to a web page with Brochures (Figure 2c).

Pino also interacts with the navigation engine differently than his
desktop Web browser. Because most every small device is
designed to select items from a list (e.g., phone numbers,
contacts), the m-Links UI uses lists1. Therefore his interaction
consists of scrolling the link list up and down, “opening” a link to
its destination page or invoking an operation (a remote service) on
a link, all of which can be accomplished by four buttons.

When Pino arrives at the brochures Web page (Figure 2c) he
positions the cursor on the desired link item and calls up the
services (Svcs) for that link. At this point a list of services
appropriate for the MIME type of the link is presented (Figure 2d).
These menu items connect to m-Links services (such as sending
the link to another user) as well as existing Web-based services
(such as language translation). Since Pino was interested in
sending a fax or mail with the product literature file, he selects the
Mail service and sends a message with the file as an attachment to
his customer contact.

Although Pino often finds it difficult to read a desktop web page
on his Internet phone, with m-Links he can comfortably navigate
sites, especially when they follow a canonical layout, as do most
corporate sites. Moreover, he can flip back and forth between the
skeleton view and actually reading the content of the site (HTML,
Adobe PDF, PowerPoint, and Word “readers” are link services).

1.3 Design Goals
The above scenario highlights some of the key aspects of the m-
Links framework. Providing access to Web information and
services on very small devices having only a few lines of text (or
images) introduces numerous challenges. In our design we
approach these challenges through a number of high-level goals:

1 This design is reminiscent of both the early line-mode browsers,

such as Lynx, as well as the familiar file selection dialogs.

�

�D�

�

�E�

�

�F�

�

�G�

Figure 2: (a) Wireless micro-browsers hook into the m-Links network-side infrastructure through a URL that manufactures
native format (CHTML, HTML, WML, HDML) screens. The m-Links Navigation Engine transforms the “fat” desktop web
into a skeleton, more easily navigable form. Links, documents, mail addresses, and other useful bits of information such as
phone numbers are returned. (b) The Navigation Engine makes it easy to dig into a site to uncover the content needed. (c)
After digging to some spot, users can do useful things by invoking a client-side or server-side service on a link. (d) The service
menu associates services to links based on link attributes such as MIME type.

• Web Navigation. We wanted to make Web navigation
on small devices faster and less disorienting, which led to
culling the links from the content.

• Get at useful bits of information. We wanted a Web
site’s useful “bits of information,” like phone numbers
and addresses, to flow up to the user. This led to the
server-side data detectors.

• Maximize program/data composibility. We wanted to
emulate the desktop computer’s ability to download
content and perform many different operations on that
content. The service menu with its list of services keyed
by a link’s MIME type allows this flexibility of
operation.

• Open Extensibility. We wanted to be able to re-use
existing web-based services as well as let users create
their own services. Our mechanism for managing the
underlying invocation and parameter passing to web-
based services based on user profile information
supports this.

1.4 Contributions
The main contribution of our work is the design and
implementation of m-Links, a supporting infrastructure for Internet
access over very small devices. This work departs from other Web
transducing systems by proposing a different style of interaction,
the navigation model, that we believe is more appropriate for very
small devices than the desktop computer’s browser model. Our
design supports this navigation model and also breaks new ground
by combining characteristics of search engines, desktop web
browsers, and content transducers.

The remaining sections of this paper elaborate on the features
highlighted in this scenario. The following section describes in
more detail the navigation model underlying our approach. The
next sections describe how m-Links fits into the existing wireless
and Internet infrastructures, followed by a presentation of the
components that make up the architecture, the server-side

applications we have been experimenting with, and implementation
details. The final sections present related work and conclusions.

2. A SMALL-DEVICE NAVIGATION MODEL
Today’s “browser model” for accessing World Wide Web
information evolved within the context of desktop computers with
extensive user interfaces (displays, keyboards, pointing devices),
considerable computing resources (CPU, storage, operating
systems), and high bandwidth network connectivity. This model
involves downloading and displaying HTML documents that
include content (text, images, and user interface components) as
well as links to other HTML and non-HTML documents (such as
audio, video, Adobe PDF, and Microsoft Office files). When a user
attempts to follow a link to a non-HTML document, the browser
automatically invokes a client-side plug-in application. Such plug-
in applications display the content and in some cases allow it to be
manipulated and output using resources provided by the user’s
computer or other networked devices.

The success of the browser model is due, in large part, to the
characteristics of networked desktop computers. Large displays
allow rich content to be presented in conjunction with embedded
links without sacrificing a user’s ability to navigate the hyperlink
structure. Full-sized keyboards and flexible pointing devices allow
users to provide input to Web pages and plug-in applications
without undue strain. Abundant CPU, storage, and operating
system resources allow complex plug-ins to be executed locally in
order to display, manipulate, and output Web content in various
ways. Finally, high-bandwidth network connectivity allows media-
rich content as well as sizeable plug-in applications to be quickly
and easily downloaded to users’ devices without compromising
interactivity.

In contrast, today’s small Internet terminals possess characteristics
much different from the devices driving the browser application
model. To illustrate these differences, consider the capabilities of
some common small wireless devices (See Figure 3). The
NeoPoint 1000, one of the larger Web phones in the U.S. market
during 2000, has a screen capable of displaying 9 lines of 24
characters2. Like most web phones, it has a twelve-key numeric
keypad that serves for both numeric as well as textual input. The
NeoPoint also includes a small number of auxiliary keys to turn
power on and off, start and end phone calls, select and activate
features in the phone’s display, and a 14.4 kbps wireless network
connection.

While some of these characteristics are improving over time,
especially in the area of higher-resolution color graphic displays, it
is unlikely that they will change substantially due to the portability
trade-offs.

Thus, instead of the browser model, we propose an alternative
navigation model for accessing and using Web content on small
devices. Whereas browsing involves an integrated activity of
navigation and reading, the model we propose separates these into
individual activities. From the user point of view, the m-Links
navigation model embodies three steps:

2 By way of comparison, DEC’s (admittedly much more massive)

VT100 terminal circa 1980 displayed 24 lines of 80 characters.

Make
Model Network Markup Screen Size

(HxW)
Dimensions
(HxWxD)

Mitsubishi
T250

CDPD 1.1 HDML
WML

80x96 pixels
10x23 chars

200g
142x56x27mm

Mitsubishi
D209i

TDMA CHTML
Color

96x90 pixels
8x7 chars

63g
125x40x15mm

NEC
N209i

TDMA CHTML
Gray

108x82 pixels
9x6 chars

86g
90x46x19mm

NeoPoint
NP1000

CDMA PCS HDML
WML

120x160 pixels
11x24 chars

181g
140x54x25mm

Palm
Pilot VII

 HTML
Gray

160x160 pixels 190g
133x83x19mm

Qualcomm
QCP-1960

CDMA HDML 28x20 pixels
4x12 chars

120g
157x53x17mm

RIM
950

Mobitex WML
Gray

132x65 pixels 142g
63x89x23mm

Samsung
SCH-3500

CDMA HDML
WML

96x32 pixels
4x12 chars

154g
112x52x25mm

Sony
CMD-Z5

GSM WML
HTML

96x72 pixels
4x17 chars

82g
88x49x21mm

Figure 3: Characteristics of some very small wireless devices.

1. The user requests a link (URL) to visit

2. The user is presented with a list of links and “digs” by
repeating step 1 or decides to “do” something with the
link destination content and goes to step 3.

3. The user is presented a list of services and upon selecting
one, enters into that service with the target link as the
primary parameter.

Informally we call this the “dig and do” model. Although the
model appears simple, the realization raises design and
implementation issues, especially in determining sensible labels for
Web links, dealing with “link overload” from Web pages with huge
numbers of links, handling information that is not directly linked
but rather embedded in Web pages, and creating a high-degree of
“open system design” in the services area.

Computing understandable and concise labels for links is a
challenge when web page creators use anchor texts like “click
here” liberally. Our design employs the notion of link label
“quality” so that during processing the algorithm can compare
various labels for the same link and select the best. Nevertheless,
even with the quality metric (described in the next section), the
issue remains that the context of a link informs the user. In other
words, the text surrounding a link helps the user understand the
content at the link destination. Clearly users will be confused upon
seeing a list of phone number links without seeing their context in
the original document.

To manage the basic problem of link context we have tightly
integrated the “reading” service into the framework. This allows

users to rapidly flip back and forth between the text of an HTML
document and the links. A user can begin reading a page at the
point where a link occurs. This gives the impression of expanding
and collapsing the text around a link (see Figure 4).

Another difficulty faced by our model is “link overload” – or just
having too many links to select from. (Actually, this is also a
problem with the browser model having too large a page to display
on a small device). Our basic approach is to provide automatic link
categorization. Figure 2c shows categories for “Navigation” and
“Offsite” which bring the user to lists of links associated with a
navigation bar, and links that take the user offsite respectively.
How these categories are detected is described later in the
architecture discussion.

As you can tell, our model uses the link as a basic unit of
manipulation, but what if the user wants to apply a service to non-
linked information? To address this we introduced data-detectors
within the infrastructure. This provides an elegant solution as long
as a detector exists for the type of information users are interested
in. We currently have detectors for phone numbers and addresses.
Creating new links with the data-detected patterns reduces input
demands on the users of devices with small and awkward input
mechanisms. In some ways this approach works like cut and paste
between applications on the desktop computer.

Finally, our proposed navigation model offers an opportunity for
open system design that is as powerful as the browser model’s use
of plug-in applications. Whereas the desktop browsers associate a
single viewer per MIME type, m-Links associates multiple services
and lets the user choose among them. This also gives m-Links
more of the feel of a desktop computer where multiple programs
can be invoked on any given data file.

In sum, m-Links allows users to exploit a more Desktop-like
application model that enables them to perform large device tasks
on smaller devices.

3. DATA FLOW
Before presenting the m-Links architecture we describe how the
system integrates into the existing wireless and Internet
infrastructures.

The packet flow through m-Links is shown in Figure 5. Our
system is designed to work with devices having an embedded
microbrowser, such as cell phones and PDAs. Such microbrowsers
are capable of accepting input from the user and displaying

Figure 4: To make link labels more understandable m-
Links tightly integrates a “reading” view with the link

view so that users can expand and collapse the text
surrounding a link.

Wireless
network

,QWHUQHW

����0LFUR�EURZVHU����
UHTXHVW

����P�/LQN�UHVSRQVH
�GHYLFH�0/�

Wireless-Internet
Gateway

����+773�UHT

����+773�UHVS
�GHYLFH�0/� M-link

service

����+773�UHT

����+773�UHVS
�+70/�

Wireless
network

,QWHUQHW

����0LFUR�EURZVHU����
UHTXHVW

����P�/LQN�UHVSRQVH
�GHYLFH�0/�

Wireless-Internet
Gateway

����+773�UHT

����+773�UHVS
�GHYLFH�0/� M-link

service

����+773�UHT

����+773�UHVS
�+70/�

Figure 5: Wireless Internet Data Flow

information. There are a number of microbrowser available that
employ various markup languages including HDML (Handheld
Device Markup Language), WML (Wireless Markup Language),
CHTML (Compact-HTML) or subsets of HTML. Our framework
works with all these markup languages.

Microbrowsers communicate over an air-link network such as
CDMA, CDPD, GSM, SMS or TDMA [10] to send requests to a
wireless Internet gateway (1). A cellular telephone carrier such as
Sprint, AT&T, Vodafone, or DoCoMo commonly operates the air
interface and it is transparent beyond the gateway. The gateway
unpacks the air-link data and forwards this information as HTTP
requests to the Internet (2). The Wireless Gateway usually
performs other functions such as acting as a cookie proxy. (Other
configurations that include private Wireless Gateways are also
possible).

When the m-Links server receives an HTTP request from the
Wireless Gateway it uses HTTP header information to identify the
microbrowser and device capabilities. Incoming requests are either
satisfied locally or a Web server is consulted (3 and 4). In order to
avoid this step, the m-Links server employs a large local store of
Web page link information.

The m-Links server will respond to HTTP requests with link or
service screens suitably formatted to device and browser
characteristics in an appropriate markup language (5). The
gateway then forwards this information to the air-link (6) where it
is unpacked by the microbrowser and displayed.

This completes a single round-trip sequence between the
microbrowser device and m-Links service. Generally this sequence
occurs for each new page screen shown to the user, although to
improve performance devices are incorporating screen caches and
are able to pre-load screens.

In some ways the m-Links navigation engine is analogous to search
engines such as AltaVista, Excite or Google. Users direct their
(micro) browser to m-Links, enter a site name and get back a list
of links. Users dig through the returned link information until a link

to the desired content is found and then a transition is made away
from the navigation engine to a service. Similarly, with search
engines users direct their web browser to the search engine, enter
keywords, get back a list of search results, refine their search, and
jump off-site to view the content.

Another similarity between the navigation engine and a search
engine is the use of crawlers. Our system includes a large store that
holds the link structure of a part of the Web. We use a crawler to
build up this database. Search engines also use crawlers to build up
link information as well as a keyword index.

In other ways m-Links is more like a caching or a transducing
proxy: when a link is requested that is not available in the database,
the navigation engine goes out and fetches the page in real time
and adds it’s link information to the store.

4. M-LINKS ARCHITECTURE
4.1 Overview
The m-Links service has three main components (Figure 6). The
Link Engine uses an HTML parser to extract links from web pages
as well as label, categorize, and detect bits of information that
should be converted into links. The Service Manager builds a
service menu for a particular link and provides service hand-off.
The User Interface Generator is the component that creates an
appropriate user interface for a particular device and markup
language. Each of these components is described more fully below,
along with a discussion of scalability and methods for
internationalization.

4.2 Link Engine
The link engine is responsible for processing web pages into a link
collection data structure (see Figure 7). The Link Engine works
with a Link Cache where link information for each processed page
is stored. A request to process a web page involves these steps: (1)
the document is loaded from the Internet using HTTP; (2) an
HTML parser creates a parse tree; (3) the text elements in the
parse tree are scanned by various data detectors for patterns (e.g.,

0�OLQNV

&
+
7
0
/

8
V
H
U
�,
Q
W
H
U
ID
F
H
�*
H
Q
H
U
D
WR
U

:
0
/

+
'
0
/

+
7
0
/

'HYLFHV

)D[

3ULQW6WRUH

:HE�'RFXPHQWV

)XOILOO

6XPPDUL]H

:RUOG�:LGH�:HE

6HUYLFH
0HQX :HE�'RFXPHQW�

6HUYLFHV
�GRW�FRPV�

/LQN
(QJLQH

/LQN

&DFKH

+70/
3DUVHU

'DWD
'HWHFWRUV

6YFV
5HJLVWU\

%DVLF�6HUYLFHV

5HDG1DYLJDWH

6HQG 0DLO

0�OLQNV

&
+
7
0
/

8
V
H
U
�,
Q
W
H
U
ID
F
H
�*
H
Q
H
U
D
WR
U

:
0
/

+
'
0
/

+
7
0
/

'HYLFHV

)D[

3ULQW6WRUH

:HE�'RFXPHQWV

)XOILOO

6XPPDUL]H

:RUOG�:LGH�:HE

6HUYLFH
0HQX :HE�'RFXPHQW�

6HUYLFHV
�GRW�FRPV�

/LQN
(QJLQH

/LQN

&DFKH

+70/
3DUVHU

'DWD
'HWHFWRUV

6YFV
5HJLVWU\

%DVLF�6HUYLFHV

5HDG1DYLJDWH

6HQG 0DLO

%DVLF�6HUYLFHV

5HDG1DYLJDWH

6HQG 0DLO

Figure 6: The m-Links architecture. Heterogeneous small wireless devices connect to m-Links using an embedded
microbrowsers. The User Interface Generator converts all outgoing information into a form suitable for the device and browser.
The Link Engine retrieves links from a Link Cache or fetches documents from Web servers and extracts link information. The
Service Manager builds a list of appropriate services for a link based on MIME type and enables execution of web-based
services.

telephone numbers and addresses) and new links are created; (4)
the links are categorized; (5) each link on the page is added to the
page’s link collection; and (6) the link collection data structure is
stored in a cache.

4.2.1 Link extraction and naming
A basic part of the m-Links system is the extraction and naming of
links from web pages. There are two types of link extracted from a
given web page: explicit and data detected. Both are obtained by
first passing the page to an HTML parser that creates a DOM
(Document Object Model) for the page. Explicit links are those
found in the HTML tags, such as anchors <A>, and image maps
<AREA>. Data detected links are those which are present in the
page but are not classified as links in HTML. Examples include
physical street addresses and phone numbers. Each data detector
receives the DOM and outputs these special links as they are
identified.

Once the links have been identified the link engine employs a link
naming algorithm to determine a concise and meaningful text label
for the link. This is the label that is shown to the user. The
algorithm identifies a variety of different possible labels for each
link and assigns them a quality value representing how “good” or
meaningful that link label is. The lowest quality label is the link
URL itself. The highest quality label is assumed to be the title of
the document at the links destination (for HTML pages) as page
authors generally make titles meaningful for book marking. Other
label sources falling between these extremes include: the anchor
text of a link; the alt-text associated with an image link; and the
link’s URL path (excluding the host name and so on).

When different links (to different documents) share the same label
the algorithm discards the label, moving to the next highest quality
label, and re-checks the uniqueness of the new labels. This
guarantees a distinct label for each different link appearing in the
final user interface.

The link label quality metric allows a graceful degradation when
poor labels are encountered. For example, a web site that titles
each page the same would produce meaningless link labels if the

only heuristic were to use the document title. With our technique
we recognize these duplicates and use other labels until
unambiguous labels are found. Additionally, the metric provides
input to a back-off algorithm when it is too time consuming to
examine all link destinations to determine the document titles.

4.2.2 Link Categorization
After links are labeled, the Link Engine categorizes them. An “off-
site” category is assigned for links that refer to documents at a
different web site from the document being processed. For
example, when processing (1) below, links to (2) are considered
on-site while links to (3) are not.

1. http://abc.here.com/index.htm

2. http://def.here.com/docs.htm

3. http://abc.there.com/main.htm

The categorization algorithm begins by extracting the server's
domain name from the URL and discarding the protocol, port, and
other components of the URL. To avoid mis-categorizing URLs
that indicate multiple servers on the same site (e.g. 1 and 2 above),
the algorithm constructs a "site identifier" for each URL by
working backwards from the top-level domain (TLD) collecting up
to two domain name components if it's a general, or gTLD (e.g.,
com, edu, gov, int, mil, net, org) and up to three components if it's
a country code, or ccTLD (e.g., au, fr, uk, etc.). These site
identifiers (e.g., "here.com" and "there.com") can then be
compared against the site identifier for the page being processed
("here.com") to separate off-site from on-site links.

A “navigation” category is used to classify links that are used
throughout a site to navigate from anywhere to common index
pages. Navigation links are identified using a number of page
layout heuristics. The categorization algorithm examines adjacent
links and attempts to verify: (1) that they reside on the same
hierarchical level in the parse tree, (2) that any intervening text
between them is identical and acceptable (e.g., "|", "-", or "]["),
and finally, (3) that the transitions, or intervening "paths" in the
parse tree, between them are identical and acceptable (e.g., they
occur in adjacent table cells or in the case of links with image
anchors, may be separated by line-breaks
 or paragraph tags
<P>).

Because the parse tree represents Web pages as containment
hierarchies, the hierarchical level for each link can be determined
by simply walking up the parse tree. If the hierarchy level is equal,
then the intervening text and paths between navigation candidates
is examined. Links with textual anchors (indicated by the <A> tag)
or image anchors (indicated by the tag) must occur in
sequence with identical intervening text and paths between them.
However, the paths that are acceptable between <A> links are not
the same as the paths that are acceptable between links.
Finally, links occurring in image maps (indicated by the <AREA>
tag) are assumed to provide site navigation functionality and
therefore are not analyzed in the same way. We have found that
while these heuristics are not foolproof, they are acceptable for the
majority of the web sites we've examined.

The m-Links architecture is also capable of supporting link
categorization based on MIME type (e.g., PDF files, MPEG files,
MP3 files) as well as based on layout characteristics (e.g., links
separated into frames, table rows, columns and cells).

<document ID=”http://www.acuson.com/index.htm”>
 <title>Welcome to Acuson</title>
 <http-headers>
 <last-modified>Wed, 15 Nov 2000 21:23:45 GMT</last-modified>
 <expires>none</expires>
 <content-type>text/html</content-type>
 <content-length>4552</content-length>
 …
 </http-headers>
 <links>
 <entry ID=”/major_products.htm” offsite=0 navigation=1>
 <name quality=10>Major Products</name>
 <name quality=1>major_products </name>
 <name quality=0>www.acuson.com/major_products.htm
 </entry>
 <entry ID=http://www.siemens.com/indexEn.html”
 offsite=1 navigation=0>
 <name quality=4>Siemens Co., Ltd</name>
 <name quality=1>indexEn</name>
 <name quality=0>www.siemens.com/indexEn.html</name>
 </entry>
 …
 </links>
</document>

Figure 7: The extracted link structure represented as an XML
document. Meta-information including HTTP header are
stored along with all the links on the page. Each link has a
variety of possible labels and categories.

4.2.3 Link cache
A cache services all outgoing requests from the link engine to the
external World Wide Web. The cache is primarily seeded with all
pages and documents from a large number of common web sites
using a custom web crawler. When a request is made for a page
that is not yet cached, it is fetched and added into the cache before
being returned. This allows the cache to grow according to use.
Subsequent requests for the same page will then result in a cache
hit.

The cache behaves in a similar manner to those used by search
engines; periodically updating existing cached pages as their
original source changes externally. However it differs by storing
the HTML page’s link collection data structure and headers. By
storing headers even for non-HTML documents, the Service
Manager is able to rapidly generate the service menu.

4.3 Service Manager
The Service Manager is responsible for returning the subset of
services that are appropriate for a link and user. There are two
sources of services available to be the m-Links architecture:
general and content provider. General services are web-based
services hosted on particular sites that have previously been
identified to the system. Users can specify which services they
would like to see for which kinds of links.

Content provider services allow web site owners to control the
services available for links to their web site. These are specified in
a “services.xml” file at the root directory relative to the link3. This
allows a content provider to include a set of customized services
for their content. For example the web site www.patents.com
might provide a service for overnight delivery of high quality
patent documents.

The Service Manager accepts a link and generates an applicable set
of services. First it checks for content provider services and then
general services. In both cases, the generator evaluates a set of
rules from the service specification against attributes of the link
(e.g. the MIME-type of the link), the characteristics of the user’s
client device (e.g. what markup can the device display), and the
user’s identity (their email address). If all the service rules are
satisfied then the service is added to the link’s service menu. In this
way a service developed to play audio files will appear only when
an audio file is the selected link.

When one of these services is eventually invoked by the user, the
Service Manager submits a HTTP request to the appropriate web
server (determined by the service description – see below),
identifying the target, the user, a return URL once the operation
completes, and a number of optional parameters.

4.3.1 Defining and Extending Services
The service specification document is the mechanism by which
both general and provider specific services are described. Figure 8
shows an abbreviated version of the XML-based specification for
an email service.

There are three main sections in a service specification: rule;
execution and presentation. The rule section describes when the
service should be presented to the user as a possible service to be

3 In a similar way to the “robots.txt” file that controls how a web

site should be crawled or indexed.

invoked. The section includes predicates that declare the required
attributes of the link, the type of client device, and the identity of
the user.

The execution section describes what URL should be executed
when the service is selected. The service is activated using an
HTTP request with a number of parameters, including the link to
operate on, the user identify and so on.

The presentation section is separated into subsections for different
languages. Each language element provides short and long labels
to present to the user, as well as a longer description. A set of icon
tags provides links to various graphical elements that can also be
used when displaying the service to the user.

The XML format for service specification allows one or more files
to be included, and allows other external specifications to be
referenced using URLs which are resolved and substituted during
the validation of the XML.

Adding new services to m-Links system is as simple as submitting
a URL with the location of the service description file. The m-
Links system then fetches and checks the description for validity,

<service-group ID="email-group">
 <service ID="email">
 <rule>
 <accept match="any">
 <client-accepts>.*text/html.*

 </client-accepts>
 <client-accepts>.*text/x-hdml.*

 </client-accepts>
 </accept>
 <reject>
 <source-mimetype>URL/.*

 </source-mimetype>
 </reject>
 </rule>
 <execution>
 <execute>/mailto</execute>
 </execution >
 <presentation>
 <language ID="en">
 <service-name>email document

 </service-name>
 <short-name>Email Link</short-name>
 <description>

Email a URL or the URL
and its contents to yourself
or a friend.

 </description>
 </language>
 <icon output-format="text/x-hdml">

envelope1
 </icon>
 </presentation>
 …
 </service>
…
</service-group>

Figure 8: A Service Specification describes a service and
determines which services are applicable for a link. The email
service (above) includes an execution section describing how
to execute the service and various pieces of presentation
information for displaying the service across different types of
menus.

and adds it to the service registry. The next time a service menu is
generated for a link the service rules will be checked and the
service can appear in the menu.

4.4 User Interface Generator
m-Links supports a variety of different user-interfaces to handle
the variety of devices that may access the system. For example,
HDML and WML markup is used by web-phones, and HTML is
used by some palm-size PDAs. However, while the markup
supported by the various client browsers on these devices differs,
the actual underlying functional and interaction model of the
interface is very similar. For example, all the different markup
language interfaces provide a screen where the user can input a
web site to be navigated. The UI Generator exploits this shared
functionality using a combination of “template markup files” and
program inheritance. Together these support a multi-view interface
for the different device types.

<HDML VERSION=3.0 MARKABLE=TRUE>
<ENTRY DEFAULT="%(defaulturl)" KEY=u FORMAT=*x>
<ACTION METHOD=GET TYPE=ACCEPT LABEL="GO"
 TASK=GOSUB FRIEND=TRUE DEST="%(next)?u=$u">
<LINE>Enter a web site:<LINE>Ex: cnn or bbc.co.uk
</ENTRY>
</HDML>

Figure 10: An HDML template markup file for the site
address input screen.

When a request arrives to m-Links, the interface generator
performs these steps: (1) identifies the type of device making the
request; (2) determines the appropriate type of response markup;
(3) extracts various pieces of information from the request (such as
the HTTP headers); (4) dispatches it to the relevant interface
markup handler (for the identified markup type) to generate the
interface; (5) returns the markup to the device.

Although the final markup may be very different from device to
device, the actual variables involved remain the same. Therefore
m-Links employs a simple template substitution technique across
most of the different interface screens. The same base interface-
code is responsible for generating the variable values from request
to request for that interface. These values are substituted into
named fields that have been inserted into the template for a given
screen. Figure 9 and Figure 10 show the same web-site input
screen for both HDML (for web-phones) and HTML (for desktop
browsers). Note that while functionally identical both templates
when completed would look very different, and the same named
variables, “defaulturl” and “next” appear in both templates.

In more complex interface situations, where the supported
functionality or methods of interaction differ significantly between
different devices and markup languages, the base interface
generator is sub-classed by the markup handler to extend and tailor
the functionality.

4.5 Internationalization
The Web contains information in many languages. The m-Links
system manages multiple languages in two ways. First, the font
encoding for the target web page is passed through the Link
Engine allowing the user to see link labels in the font intended by
the author. Second, m-Links allows the language for menus,
prompts, and messages to be specified by the user. This is
facilitated by the use of template markup files for each language.

5. SERVICES
We have experimented with a number of services that are
described below in broad categories.

5.1 Reading
Although reading of link content, such as MS Word or HTML, is
difficult on small devices, we developed a number of reading (or
preview) services for different file types because people wanted to
“check the contents” before proceeding with another operation
such as faxing. Each reading service extracts content from a type
of file and presents it in a device-specific manner. For example, our
PowerPoint reader extracts the text from slides rather than the
graphics because our current set of devices are not graphic
capable. By convention, the text from each reader service is
presented in a simple linear format. In an earlier system [5] we
experimented with different presentations, including
summarizations based on the document structure (e.g., expandable

<html>
<head>
<title>Input</title>
</head>
<body bgcolor="#FFFFEE">
<h2></h2>
<table border="0" width="530" height="100">
 <tr>
 <td width="523" height="51">
 <h2>Web Links</h2>
 </td>
 </tr>
 <tr>
 <td width="523" height="40">
 Enter the name or URL of the web site where you
 would like to visit :</td>
 </tr>
</table>
<form method="get" action=%(next)>
<table border="0" width="530" height="50">
 <tr>
 <td width="465" height="11">
 <input name="u" size="65" value=%(defaulturl)></td>
 <td width="465" height="11">
 <input type="submit" value="Go"> </td>
 </tr>
 <tr>
 <td width="465" height="27"><i>
 (E.g. cnn or bbc.co.uk)</i>
 </td>
 …
</body>
</html>

Figure 9: An HTML template markup file for the site address

input screen

Figure 11:
Internationalization
involves passing language
information from the
original web pages to the
link menu screen. Each
screen template used by
the UI generator includes
version for different
language as well.

outline views using headings and sub-headings), but found the
linear presentation less disorienting to users of very small devices.
Although we had intended each reading service to be a completely
independent component of the system, the HTML reader evolved
into a tightly coupled component because it was useful to flip back
and forth between the link and the reading views. This was
desirable, for example, to see the document context of a telephone
number and other non-intuitively named links.

5.2 Sending
We developed both email and alert style link communication as
services. The email service can send the link, and optionally the
link contents as an attachment, to one or more email recipients.
The email message itself contains a URL pointing at the m-Links
service menu page for the link. Therefore the email recipient can
immediately enter the m-Links system (on the desktop or their
small device) and be presented with a set of appropriate services to
act on that link.

The WAP-alert service exploits the alert functionality of the
UP.LINK gateway used by some WAP phones. When the alert
service is invoked on a link a buddy list of users with WAP phones
is presented. Selection causes a WAP-alert to be sent to that user’s
phone, which will popup a message on the phone. If the recipient
accepts the message their WAP mini-browser takes them to the m-
Links page for that link – allowing easy access to useful tools for
the link.

5.3 Printing
We developed a number of print and fax services to deliver hard
copies of the contents of links to users. Our fax service was
developed as a wrapper around an existing web-based service
(www.eFax.com). The wrapper accepts the target link and
prompts the user for a fax number. It then downloads the
document and sends it as an email attachment to the fax service.
The print service uses a print-queue monitor application that runs
on a user’s networked desktop computer. When the print service is
invoked, a link is added to the user’s print queue. The monitor
detects the link, downloads the contents to the user’s local disk
and invokes the appropriate application to print.

5.4 Mapping
We developed two services that operate on data-detected address
links. They both employ the Yahoo on-line mapping service to
obtain data. The first provides text-only directions to the address.
The second displays a list of various maps at different zoom levels.
These maps are links to GIF images on the web. When a map is
selected the service invokes the m-Links system again to display
possible service operations for the particular (GIF) map, allowing
the user to fax, print, or email the map.

6. IMPLEMENTATION & EXPERIENCE
Our implementation of the m-Links system is based on Java servlet
engine running under Microsoft’s IIS web server. We are running
our system on a Pentium III processor with 256 MB of memory
connected to a T1 network connection. Most of our early work
employed a DSL connection that was suitable for all but massive
crawling activities.

We seeded the current system by web crawling 5,000 sites selected
at random from the Yahoo directory. This produced a few hundred
megabytes of extracted link structure for the cache. We also

produced a Yahoo style categorized directory listing pointing at
these sites as a test “bookmark” list.

One issue we have found with the implementation is that some web
pages contain client-side scripts (such as Javascript or VBScript)
that are executed by the user’s web browser. This allows features
such as dynamic menus to be constructed based on the user’s
interaction with the page. These types of pages are a problem for
m-Links as well as search engines since it is impossible to evaluate
such scripts out of context and away from the user. In practice this
problem is not so severe for two reasons. First, authors of many
scripted pages also provide “hidden” or extra links for non-script
supporting browsers to display. These are picked up by our HTML
DOM parser and fed directly into the link engine. Secondly, many
sites are aware of this problem but also want indexing by search
engines and therefore provide alternative pages which link into the
site contents.

7. RELATED AND FUTURE WORK
The m-Links system is related to middleware services that support
wireless devices [1][2][3][5][7][8][15][17] as well as the general
approach of using transducers on World Wide Web content [4].
One way we categorize these mobile web systems is by the target
device size and capabilities.

The Web Digestor was developed to run on a range of devices but
was most effective on PDAs. It employs a number of re-authoring
techniques including outline summarization and elision of all but
the first sentence of paragraphs. As mentioned earlier, Digestor (as
well as other systems) followed the tradition of the desktop-based
browser by presenting both content and links together. For the
relatively large PDA devices, other elegant integrated solutions are
possible. For example, the PowerBrowser presents both content
and links using a technique in the tradition of fisheye views where
a large body of information is displayed in progressively greater
detail, with surrounding context always visible to some extent [6].
Other examples are Microsoft’s Pocket and Mobile Explorers that
faithfully reduce web pages on devices with high resolution
displays using a shrink to fit feature [12].

However, as Internet devices get smaller these techniques become
increasingly problematic. One approach used by Mobile Yahoo for
phone-sized devices is to customize the presentation from the
server using an existing, manually authored link database.
Similarly, Xdrive [16] and Satchel [11] provide easy interfaces to
access files from certain remote file stores and perform (limited)
document-specific operations. Mobile Google generalizes by
allowing users to search for and display World Wide Web HTML
content on their mobile phones. The m-Links system goes further
by allowing any World Wide Web content to be accessed (not just
HTML) and provides an open architecture for adding services (not
limited to reading).

The link-centric interface of m-Links exploits the notion of Data
Detectors introduced by Apple so that non-linked data such as
addresses can be associated with services [13].

We have been using the system over the last 6 months in the U.S.
on a wide variety of Sprint Web phones and in Japan on DoCoMo
CHTML web phones. Although the m-Link implementation has
difficulty producing manageable results for pages with hundreds of
links, we feel the navigation model is still the most promising
approach for leveraging Web content on very small devices.

In the future our work will focus on: expanding the categorization
capabilities to handle link-heavy pages; integrating a search engine
to help find a starting point for navigation; and providing a generic
mechanism for passing data from the user or user profile to
services.

8. CONCLUSIONS
Our experience trying to use one of the early Web content
transducers led us to reconsider the goal held by many to browse
the Web. Instead we recognize that browsing requires a large
interface not available on small devices and furthermore that
reading content is difficult at best on small devices.

We propose a new interaction model called the navigation model
for very small Internet terminals that has fewer requirements on the
UI than the desktop computer’s browsing model. We have
presented an infrastructure design and described an implementation
of our m-Links system supporting this model.

The m-Links system addresses our design goals: (1) supporting
web navigation on very small devices; (2) getting at useful bits of
embedded information on web pages; (3) maximizing program-
data composibility through a separation of service from link; (4)
providing a open framework for others to develop new services for
wireless devices.

9. ACKNOWLEDGMENTS
We thank Andreas Girgensohn who helped develop the Digestor
system along with Debra Go, Patrick Ahern, Eric Hope, Mik
Lamming, Elizabeth Churchill, Cathy Marshall and Harry Saddler
for their useful feedback. Finally, we thank Jim Baker and FX Palo
Alto Laboratory for supporting this research.

10. REFERENCES
[1] Brewer, E., Katz, R.H. et. al. A Network Architecture for

Heterogeneous Mobile Computing. IEEE Personal
Communications Magazine (October 1998).

[2] Bartlett, J.F. Experience with a Wireless World Wide Web
Client in Proceedings of IEEE COMPCON 95 (San
Francisco, March 1995).

[3] Beck, J., Gefflaut, A. and Islam, N. MOCA: a service
framework for mobile computing devices in Proceedings of
the ACM International Workshop on Data Engineering for
Wireless and Mobile Access (Seattle WA, August 20, 1999)
62-68.

[4] Brooks, C., Mazer, M., Meeks, S., and Miller, J. Application-
Specific Proxy Servers as HTTP Stream Transducers in
Proceedings of the Fourth International World Wide Web
Conference (Boston MA, December 1995).

[5] Bickmore, T. and Schilit, B.N. Digestor: Device-Independent
Access to the World Wide Web in Proceedings of the Sixth
International World Wide Web Conference (Santa Clara CA,
1997).

[6] Buyukkokten, O., Garcia-Molina, H., Paepcke, A., and
Winograd, T. Power Browser: Efficient Web Browsing for
PDAs in Proceedings of the Human-Computer Interaction
Conference 2000 (CHI 2000) (The Hague, The Netherlands,
April 1-6, 2000).

[7] Fox, A. and Brewer, E. Reducing WWW Latency and
Bandwidth Requirements via Real-Time Distillation, in
Proceedings of the Fifth International World Wide Web
Conference, World Wide Web Consortium (Paris, France,
1996)

[8] Fox, A., Goldberg, I., Gribble, S.D., Lee, D.C., Polito, A.,
and Brewer, E.A. Experience With Top Gun Wingman, A
Proxy-Based Graphical Web Browser for the USR PalmPilot
in Proceedings of the IFIP International Conference on
Distributed Systems Platforms and Open Distributed
Processing (Middleware '98) (Lake District, UK, Sept. 1998)

[9] Gessler, S., and Kotulla, A. PDAs as Mobile WWW
Browsers in Proceedings of the Second International World
Wide Web Conference (Chicago, October 1994).

[10] Harvey, F. The Internet in Your Hands, Scientific American,
283(4) (Oct. 2000).

[11] Lamming, M., Eldridge, M., Flynn, M., Jones, C., and
Pendlebury, D. Satchel: providing access to any document,
any time, anywhere. ACM Transactions on Computer-Human
Interaction, 7(3) (2000).

[12] Microsoft Corporation. Pocket Internet Explorer.
http://www.microsoft.com/mobile/.

[13] Nardi, B.A., Miller, J.R., and Wright, D.J., Collaborative,
Programmable Intelligent Agents. Communications of the
ACM 41(3) (March 1998).

[14] Pandit, M.S., and Kalbag, S. The selection recognition agent:
Instant access to relevant information and operations in
Proceedings of Intelligent User Interfaces. (New York, 1997),
ACM Press.

[15] Schilit, B.N., Douglis, F., Kristol, D.M., Krzyzanowski, P.,
Sienicki, J., and Trotter, J.A.: TeleWeb: Loosely Connected
Access to the World Wide Web in Proceedings of the Fifth
World Wide Web Conference (WWW5) (Paris, France, 1996)
in Computer Networks 28(7-11) 1431-1444

[16] Xdrive Technologies. An Online Storage Box for Everyone.
http://www.xdrive.com

[17] Zenel, B., and Duchamp, D. A General Purpose Proxy
Filtering Mechanism Applied to the Mobile Environment in
Proceedings of MOBICOM (1997), ACM Press, 248-259

