Using Business-Aware Latent Topics For Image Captioning In Social Media

Abstract

Captions are a central component in image posts that communicate the background story behind photos. Captions can enhance the engagement with audiences and are therefore critical to campaigns or advertisement. Previous studies in image captioning either rely solely on image content or summarize multiple web documents related to image’s location; both neglect users’ activities. We propose business-aware latent topics as a new contextual cue for image captioning that represent user activities. The idea is to learn the typical activities of people who posted images from business venues with similar categories (e.g., fast food restaurants) to provide appropriate context for similar topics (e.g., burger) in new posts. User activities are modeled via a latent topic representation. In turn, the image captioning model can generate sentences that better reflect user activities at business venues. In our experiments, the business-aware latent topics are effective for adapting to captions to images captured in various businesses than the existing baselines. Moreover, they complement other contextual cues (image, time) in a multi-modal framework.