Video Text Retouch: Retouching Text in Videos with Direct
Manipulation

Laurent Denoue, Scott Carter, Matthew Cooper
FX Palo Alto Laboratory
3174 Porter Dr.
Palo Alto, CA, 94304 USA
{denoue, carter, cooper} @fxpal.com

ABSTRACT

Video Text Retouch is a technique for retouching textual
content found in many online videos such as screencasts,
recorded presentations and many online e-learning videos.
Viewed through our special, HTMLS5-based player, users can
edit in real-time the textual content of the video frames, such
as correcting typos or inserting new words between existing
characters. Edits are overlaid and tracked at the desired posi-
tion for as long as the original video content remains similar.
We describe the interaction techniques, image processing al-
gorithms and give implementation details of the system.

Author Keywords
Video editing, video retouch, direct manipulation, text
editing, web-based systems, HTMLS5 video processing

ACM Classification Keywords
H.5.2 Graphical user interfaces (GUI): Miscellaneous

INTRODUCTION

Millions of training videos or recorded meetings and lectures
are available online. Unfortunately, when an author or an-
other user needs to correct the content found in these videos,
the process can be very time consuming. The whole sequence
can be recaptured, or the user needs to edit the video using a
standard video editor and retouch it frame by frame, e.g. to
delete a word or add new content.

Instead, taking inspiration from past work on retouching
static images [1], our system uses direct video manipulation
as an interaction technique to more easily retouch the text
(and ink) content displayed in these videos.

To edit a line of text, the user can click over that line in the
video canvas. The tool automatically pauses the video, iden-
tifies the text line using visual content analysis, and allows
the user to edit this text line, as shown in Figure 1.

The retouched content is automatically rendered over the
original, giving viewers the illusion that the original video

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Copyright (© 2014 ACM ISBN/14/04...$15.00.

DOI string from ACM form confirmation

V— \ V— A
function canvasCapture() 3 function canvasCapture()
this.technology = 'raster’; 5 this.technology = 'raster';
6 | 6 this.marginuidth = |
E °
V—- \

function canvasCapture()
this.technology - Jwebrec raster’;
701

(©)
A

function canvasCapture()

this.technology = "webrtc raster’;
this.marginkidth = |

!

(e)

Figure 1. An example screencast video showing a code editor. In the
original video the author types the first line of the function (a) and con-
tinues on to the second line (b). Using Video Text Retouch, the user can
click directly on the first line to add “webrtc” before “raster” (c). Note
in (c) that the cursor in the original video on the second line is black
while the edit cursor on the first line is in red. As the user types, charac-
ters are automatically inserted, shifting the rest of the line to the right.
Time-synchronized edits initially exist in a layer above the original video
(d). Users can hide or show edits using our video player. When shown
during playback the edits appear as if they are part of the video (e).

has been edited. The system automatically adjusts the edited
content over new video frames and removes overlays when
new frames appear but the original line is no longer found.

INTERACTION TECHNIQUE

To retouch a video, users simply drag and drop the video file
onto the app’s web page. The video plays inside an HTML5
video element. When the user clicks somewhere over the
video canvas, the video is paused and a text insertion cur-
sor is overlaid, prompting users to start editing the text line as
if they were using a conventional text editor. New edits are
appended to a time-synchronized layer above the video. Our
video player collapses layers so that, to the user, it appears as
if edits are part of the original video.

Figure 2. Each video frame is binarized and the bounding boxes of con-
nected components are used to identify text lines (gray boxes); when a
user clicks over the video, the text line is detected (black boxes) and its
bitmap saved to build the overlay stripe.

The user can use backspace to delete, arrow keys to position,
and type any character letter. The system visually adjusts the
text line to reflect the changes.

When the user clicks again over the video, the system re-
sumes playback and the newly created overlay is automati-
cally shown over subsequent video frames for as long as the
original content underneath the edited line is similar. When
the original content becomes different, the overlays are also
no longer displayed.

An option in our video player allows viewers to toggle edits
on and off so they can compare the original video with the ed-
its. Another option instructs the system to collapse the layers
into a single, standard video file for sharing.

BROWSER-BASED IMPLEMENTATION IN HTML5

The system processes the video frames in real-time using
lightweight and efficient image processing in JavaScript. The
original video is hidden and incoming frames are instead
drawn in real-time over a visible CANVAS element, from
which we can extract and manipulate pixel data, as well as
capture the user’s mouse and keyboard events.

When the user clicks over the CANVAS, the video is paused
and the current frame is binarized using automatic threshold-
ing; the bounding boxes of connected components are ex-
tracted from this binary image, as illustrated in Figure 2 fol-
lowing [2]. Next, the system finds the closest bounding box
located to the left of the click position, and identifies the line
of text to be edited by looking to the left and right of this
first bounding box. A bitmap corresponding to this text line
is extracted from the current video frame as a horizontal band
spanning the whole frame width, where its height and posi-
tion are given by the text line’s height and vertical position.

The line height is the mean of the bounding box heights, and
the text color is determined by the average color of the pixels
found in the underlying connected components. These values
are used to choose the font size and color of the characters
that will be drawn in the bitmap to render any added text.

Each bounding box is assumed to represent a character.
When a keyboard event is received and corresponds to a
character insertion, the system shifts the adjacent boxes
to the right and draws the character glyph over the blank
position. Similarly, if the key code is navigational, i.e.
backspace/delete/left/right, the system moves the appropriate
bounding boxes and updates the position of the cursor.

After each keyboard event, the edited version of the text line
bitmap is then overlaid on the video canvas, giving users the
perfect illusion that the edits are taking place.

PERSISTING EDITS IN REAL-TIME

When the user has finished editing and resumes playing the
video, the system continues to analyze incoming frames, and
applies the same technique of binarization and connected
components extraction.

If boxes under the edited line are similar to any changes text
lines, the system continues to show the corresponding over-
lay. However, two types of conflicts can occur: the original
content may move somewhere else on the video canvas, or it
has changed significantly.

When the underlying content changes, users may still wish
for their edits to persist. Currently, we detect vertical shifts
and reposition the overlays accordingly. For example, videos
showing a text editor, web page, or word processor often
scroll vertically. In those cases, the system automatically
moves the overlay to correspond with the shift. However,
when the content translates or new content appears, the sys-
tem simply removes the overlay by default. Better tracking of
content changes could be added to the system, e.g. tracking
translations would allow the system to reposition the over-
lays when the video contains a desktop window moving on
the screen. But our initial implementation is already very
useful for many cases, including mostly static video record-
ings like lectures where the displayed slides do not change
frequently, or even digital ink based tutorials such as Khan
Academy videos where the content usually only scrolls verti-
cally. Also, recreating edits later during the video playback is
still much faster than using a regular video editing tool.

CONCLUSION AND FUTURE WORK

We presented a novel system that lets users quickly retouch
text in videos such as lectures, and online screencasts. Users
simply click over the video and start editing the text, reusing
familiar metaphor for editing. The system monitors changes
in subsequent frames and automatically adjusts the location
of the overlays when the content scrolls vertically.

We are developing other tracking algorithms that will reposi-
tion the overlays when the content translates (e.g. a window
is moved in the video); we are also applying the technique for
ink-based content such as Khan Academy tutorials.

We believe that these editing systems will help people rapidly
reuse and improve upon existing video content. Ultimately,
our goal is to make it as easy to reuse and modify video con-
tent as it is to reuse and modify slide decks.

REFERENCES
1. Bagley, S. C. and Kopec, G. E. Editing images of text.
Communications of the ACM. 37(12). 63-72. 1994.

2. Chang, F., Chen, C-J., Lu, C-J. A linear-time
component-labeling algorithm using contour tracing
technique. Computer Vision and Image Understanding.
93(2). 206-220. 2004.

	Introduction
	Interaction Technique
	BROWSER-BASED IMPLEMENTATION IN HTML5
	Persisting edits in real-time
	CONCLUSION AND FUTURE WORK
	REFERENCES

