Mining Social Multimedia

Mining social media using textual and multimedia information

Social media is a popular way for people to express opinions and provide information to the public at large. By mining social media, information such as sentiment about topics, patterns of activities, and profiles of users can be inferred. Many types of social media contain multimedia such as images, video, and metadata including geo-tags; these can also be mined to provide complementary information to enhance purely textual approaches.

Characterizing people and places: The percentage of the world’s tweets that contain multimedia and/or are geo-tagged keeps growing as more tweets are sent from geo-enabled mobile devices with cameras. The upper figure visualizes a small sample of geo-tagged tweets in the entire world  captured within a 24-hour period. The bottom figure visualizes geo-tagged tweets in the San Francisco Bay area tweeted from three types of business venues/places mined from social media.  Images can provide complementary information to that in the tweet text, such as gender based on facial characteristics. We are investigating how image information and patterns across space and time from geo-tagged tweets can be used for profiling, personalization and recommendation of people and places.

Twitter sentiment: For longer texts like product reviews, it has been observed that domain adaptation improves sentiment estimation performance. We examined whether topic-dependent sentiment models have better performance than topic-independent models for tweets and observed that topic-dependent models have better performance for some topics. Based on this observation, we developed a method to:

  • rank topics as to whether a topic-dependent model is likely to improve performance significantly for a given topic.
  • identify terms that switch polarity in the context of a  particular topic, which can be used to create a context-sensitive sentiment dictionary.

Related Publications

2016
Publication Details
  • CBRecSys: Workshop on New Trends in Content-Based Recommender Systems at ACM Recommender Systems Conference
  • Sep 2, 2016

Abstract

Close
The abundance of data posted to Twitter enables companies to extract useful information, such as Twitter users who are dissatisfied with a product. We endeavor to determine which Twitter users are potential customers for companies and would be receptive to product recommendations through the language they use in tweets after mentioning a product of interest. With Twitter's API, we collected tweets from users who tweeted about mobile devices or cameras. An expert annotator determined whether each tweet was relevant to customer purchase behavior and whether a user, based on their tweets, eventually bought the product. For the relevance task, among four models, a feed-forward neural network yielded the best cross-validation accuracy of over 80% per product. For customer purchase prediction of a product, we observed improved performance with the use of sequential input of tweets to recurrent models, with an LSTM model being best; we also observed the use of relevance predictions in our model to be more effective with less powerful RNNs and on more difficult tasks.

Tweetviz: Visualizing Tweets for Business Intelligence

Publication Details
  • SIGIR 2016
  • Jul 18, 2016

Abstract

Close
Social media offers potential opportunities for businesses to extract business intelligence. This paper presents Tweetviz, an interactive tool to help businesses extract actionable information from a large set of noisy Twitter messages. Tweetviz visualizes tweet sentiment of business locations, identifies other business venues that Twitter users visit, and estimates some simple demographics of the Twitter users frequenting a business. A user study to evaluate the system's ability indicates that Tweetviz can provide an overview of a business's issues and sentiment as well as information aiding users in creating customer profiles.
Publication Details
  • ICME 2016
  • Jul 11, 2016

Abstract

Close
Captions are a central component in image posts that communicate the background story behind photos. Captions can enhance the engagement with audiences and are therefore critical to campaigns or advertisement. Previous studies in image captioning either rely solely on image content or summarize multiple web documents related to image's location; both neglect users' activities. We propose business-aware latent topics as a new contextual cue for image captioning that represent user activities. The idea is to learn the typical activities of people who posted images from business venues with similar categories (e.g., fast food restaurants) to provide appropriate context for similar topics (e.g., burger) in new posts. User activities are modeled via a latent topic representation. In turn, the image captioning model can generate sentences that better reflect user activities at business venues. In our experiments, the business-aware latent topics are effective for adapting to captions to images captured in various businesses than the existing baselines. Moreover, they complement other contextual cues (image, time) in a multi-modal framework.
Publication Details
  • LREC 2016
  • May 23, 2016

Abstract

Close
Many people post about their daily life on social media. These posts may include information about the purchase activity of people, and insights useful to companies can be derived from them: e.g. profile information of a user who mentioned something about their product. As a further advanced analysis, we consider extracting users who are likely to buy a product from the set of users who mentioned that the product is attractive. In this paper, we report our methodology for building a corpus for Twitter user purchase behavior prediction. First, we collected Twitter users who posted a want phrase + product name: e.g. "want a Xperia" as candidate want users, and also candidate bought users in the same way. Then, we asked an annotator to judge whether a candidate user actually bought a product. We also annotated whether tweets randomly sampled from want/bought user timelines are relevant or not to purchase. In this annotation, 58% of want user tweets and 35% of bought user tweets were annotated as relevant. Our data indicate that information embedded in timeline tweets can be used to predict purchase behavior of tweeted products.

Social Media-Based Profiling of Business Locations

Publication Details
  • Fuji Xerox Technical Report
  • Mar 17, 2016

Abstract

Close
We present a method for profiling businesses at specific locations that is based on mining information from social media. The method matches geo-tagged tweets from Twitter against venues from Foursquare to identify the specific business mentioned in a tweet. By linking geo-coordinates to places, the tweets associated with a business, such as a store, can then be used to profile that business. From these venue-located tweets, we create sentiment profiles for each of the stores in a chain. We present the results as heat maps showing how sentiment differs across stores in the same chain and how some chains have more positive sentiment than other chains. We also estimate social group size from photos and create profiles of social group size for businesses. Sample heat maps of these results illustrate how the average social group size can vary across businesses.
Publication Details
  • IUI 2016
  • Mar 7, 2016

Abstract

Close
We describe methods for analyzing and visualizing document metadata to provide insights about collaborations over time. We investigate the use of Latent Dirichlet Allocation (LDA) based topic modeling to compute areas of interest on which people collaborate. The topics are represented in a node-link force directed graph by persistent fixed nodes laid out with multidimensional scaling (MDS), and the people by transient movable nodes. The topics are also analyzed to detect bursts to highlight "hot" topics during a time interval. As the user manipulates a time interval slider, the people nodes and links are dynamically updated. We evaluate the results of LDA topic modeling for the visualization by comparing topic keywords against the submitted keywords from the InfoVis 2004 Contest, and we found that the additional terms provided by LDA-based keyword sets result in improved similarity between a topic keyword set and the documents in a corpus. We extended the InfoVis dataset from 8 to 20 years and collected publication metadata from our lab over a period of 21 years, and created interactive visualizations for exploring these larger datasets.
Publication Details
  • AAAI
  • Feb 12, 2016

Abstract

Close
Image localization is important for marketing and recommendation of local business; however, the level of granularity is still a critical issue. Given a consumer photo and its rough GPS information, we are interested in extracting the fine-grained location information (i.e. business venues) of the image. To this end, we propose a novel framework for business venue recognition. The framework mainly contains three parts. First, business aware visual concept discovery: we mine a set of concepts that are useful for business venue recognition based on three guidelines including business-awareness, visually detectable, and discriminative power. Second, business-aware concept detection by convolutional neural networks (BA-CNN): we pro- pose a new network architecture that can extract semantic concept features from input image. Third, multimodal business venue recognition: we extend visually detected concepts to multimodal feature representations that allow a test image to be associated with business reviews and images from social media for business venue recognition. The experiments results show the visual concepts detected by BA-CNN can achieve up to 22.5% relative improvement for business venue recognition compared to the state-of-the-art convolutional neural network features. Experiments also show that by leveraging multimodal information from social media we can further boost the performance, especially in the case when the database images belonging to each business venue are scarce.
2015
Publication Details
  • MM Commons Workshop co-located with ACM Multimedia 2015.
  • Oct 30, 2015

Abstract

Close
In this paper, we analyze the association between a social media user's photo content and their interests. Visual content of photos is analyzed using state-of-the-art deep learning based automatic concept recognition. An aggregate visual concept signature is thereby computed for each user. User tags manually applied to their photos are also used to construct a tf-idf based signature per user. We also obtain social groups that users join to represent their social interests. In an effort to compare the visual-based versus tag-based user profiles with social interests, we compare corresponding similarity matrices with a reference similarity matrix based on users' group memberships. A random baseline is also included that groups users by random sampling while preserving the actual group sizes. A difference metric is proposed and it is shown that the combination of visual and text features better approximates the group-based similarity matrix than either modality individually. We also validate the visual analysis against the reference inter-user similarity using the Spearman rank correlation coefficient. Finally we cluster users by their visual signatures and rank clusters using a cluster uniqueness criteria.

Inferring Crowd-Sourced Venues for Tweets

Publication Details
  • IEEE BigData 2015
  • Oct 29, 2015

Abstract

Close
Knowing the geo-located venue of a tweet can facilitate better understanding of a user's geographic context, allowing apps to more precisely present information, recommend services, and target advertisements. However, due to privacy concerns, few users choose to enable geotagging of their tweets resulting in a small percentage of tweets being geotagged; furthermore, even if the geo-coordinates are available, the closest venue to the geo-location may be incorrect. In this paper, we present a method for providing a ranked list of geo-located venues for a non-geotagged tweet, which simultaneously indicates the venue name and the geo-location at a very fine-grained granularity. In our proposed method for Venue Inference for Tweets ({\VIT}), we construct a heterogeneous social network in order to analyze the embedded social relations, and leverage available but limited geographic data to estimate the geo-located venue of tweets. A single classifier is trained to predict the probability of a tweet and a geo-located venue being linked, rather than training a separate model for each venue. We examine the performance of four types of social relation features and three types of geographic features embedded in a social network when predicting whether a tweet and a venue are linked, with a best accuracy of over 88%. We use the classifier probability estimates to rank the predicted geo-located venues of a non-geotagged tweet from over 19k possibilities, and observed an average top-5 accuracy of 29%.
2014

Social Media-based Profiling of Store Locations

Publication Details
  • ACM Multimedia Workshop on Geotagging and Its Applications in Multimedia
  • Nov 2, 2014

Abstract

Close
We present a method for profiling businesses at specific locations that is based on mining information from social media. The method matches geo-tagged tweets from Twitter against venues from Foursquare to identify the specific business mentioned in a tweet. By linking geo-coordinates to places, the tweets associated with a business, such as a store, can then be used to profile that business. We used a sentiment estimator developed for tweets to create sentiment profiles of the stores in a chain, computing the average sentiment of tweets associated with each store. We present the results as heatmaps which show how sentiment differs across stores in the same chain and how some chains have more positive sentiment than other chains. We also created profiles of social group size for businesses and show sample heatmaps illustrating how the size of a social group can vary.
Publication Details
  • ACM SIGIR International Workshop on Social Media Retrieval and Analysis
  • Jul 11, 2014

Abstract

Close
We examine the use of clustering to identify selfies in a social media user's photos for use in estimating demographic information such as age, gender, and race. Faces are first detected within a user's photos followed by clustering using visual similarity. We define a cluster scoring scheme that uses a combination of within-cluster visual similarity and average face size in a cluster to rank potential selfie-clusters. Finally, we evaluate this ranking approach over a collection of Twitter users and discuss methods that can be used for improving performance in the future.
Publication Details
  • ICWSM (The 8th International AAAI Conference on Weblogs and Social Media)
  • Jun 1, 2014

Abstract

Close
A topic-independent sentiment model is commonly used to estimate sentiment in microblogs. But for movie and product reviews, domain adaptation has been shown to improve sentiment estimation performance. We investigated the utility of topic-dependent polarity estimation models for microblogs. We examined both a model trained on Twitter tweets containing a target keyword and a model trained on an enlarged set of tweets containing terms related to a topic. Comparing the performance of the topic-dependent models to a topic-independent model trained on a general sample of tweets, we noted that for some topics, topic-dependent models performed better. We then propose a method for predicting which topics are likely to have better sentiment estimation performance when a topic-dependent sentiment model is used.