Jian Zhao, Ph.D.

Senior Research Scientist

Jian Zhao

Jian joined FXPAL in 2016. His research lies in the intersection of information visualization, human-computer interaction, and data science. He is dedicated to developing interactive and intelligent visualizations that optimize the analytical workflow of solving complex real-world data problems, promoting the interplay of humanmachine, and data. Jian received his Ph.D. at the Department of Computer Science, University of Toronto in July 2015. For more information, please visit his personal webpage.

Co-Authors

Publications

2019
Publication Details
  • VDS'19
  • Oct 20, 2019

Abstract

Close
Computational notebooks have become a major medium for data exploration and insight communication in data science. Although expressive, dynamic, and flexible, in practice they are loose collections of scripts, charts, and tables that rarely tell a story or clearly represent the analysis process. This leads to a number of usability issues, particularly in the comprehension and exploration of notebooks. In this work, we design, implement, and evaluate Albireo, a visualization approach to summarize the structure of notebooks, with the goal of supporting more effective exploration and communication by displaying the dependencies and relationships between the cells of a notebook using a dynamic graph structure. We evaluate the system via a case study and expert interviews, with our results indicating that such a visualization is useful for an analyst’s self-reflection during exploratory programming, and also effective for communication of narratives and collaboration between analysts.

Interactive Bicluster Aggregation in Bipartite Graphs

Publication Details
  • IEEE VIS 2019
  • Oct 20, 2019

Abstract

Close
Exploring coordinated relationships is important for sensemaking of data in various fields, such as intelligence analysis. To support such investigations, visual analysis tools use biclustering to mine relationships in bipartite graphs and visualize the resulting biclusters with standard graph visualization techniques. Due to overlaps among biclusters, such visualizations can be cluttered (e.g., with many edge crossings), when there are a large number of biclusters. Prior work attempted to resolve this problem by automatically ordering nodes in a bipartite graph. However, visual clutter is still a serious problem, since the number of displayed biclusters remains unchanged. We propose bicluster aggregation as an alternative approach, and have developed two methods of interactively merging biclusters. These interactive bicluster aggregations help organize similar biclusters and reduce the number of displayed biclusters. Initial expert feedback indicates potential usefulness of these techniques in practice.
Publication Details
  • IEEE InfoVis 2019
  • Oct 20, 2019

Abstract

Close
Think-aloud protocols are widely used by user experience (UX) practitioners in usability testing to uncover issues in user interface design. It is often arduous to analyze large amounts of recorded think-aloud sessions and few UX practitioners have an opportunity to get a second perspective during their analysis due to time and resource constraints. Inspired by the recent research that shows subtle verbalization and speech patterns tend to occur when users encounter usability problems, we take the first step to design and evaluate an intelligent visual analytics tool that leverages such patterns to identify usability problem encounters and present them to UX practitioners to assist their analysis. We first conducted and recorded think-aloud sessions, and then extracted textual and acoustic features from the recordings and trained machine learning (ML) models to detect problem encounters. Next, we iteratively designed and developed a visual analytics tool, VisTA, which enables dynamic investigation of think-aloud sessions with a timeline visualization of ML predictions and input features. We conducted a between-subjects laboratory study to compare three conditions, i.e., VisTA, VisTASimple (no visualization of the ML’s input features), and Baseline (no ML information at all), with 30 UX professionals. The findings show that UX professionals identified more problem encounters when using VisTA than Baseline by leveraging the problem visualization as an overview, anticipations, and anchors as well as the feature visualization as a means to understand what ML considers and omits. Our findings also provide insights into how they treated ML, dealt with (dis)agreement with ML, and reviewed the videos (i.e., play, pause, and rewind).
Publication Details
  • IEEE VIS 2019
  • Oct 20, 2019

Abstract

Close
The analysis of bipartite networks is critical in a variety of application domains, such as exploring entity co-occurrences in intelligence analysis and investigating gene expression in bio-informatics. One important task is missing link prediction, which infers the existence of unseen links based on currently observed ones. In this paper, we propose MissBiN that involves analysts in the loop for making sense of link prediction results. MissBiN combines a novel method for link prediction and an interactive visualization for examining and understanding the algorithm outputs. Further, we conducted quantitative experiments to assess the performance of the proposed link prediction algorithm, and a case study to evaluate the overall effectiveness of MissBiN.
Publication Details
  • ACM SIGMOD/PODS workshop on Human-In-the-Loop Data Analytics (HILDA)
  • Jun 30, 2019

Abstract

Close
Manufacturing environments require changes in work procedures and settings based on changes in product demand affecting the types of products for production. Resource re-organization and time needed for worker adaptation to such frequent changes can be expensive. For example, for each change, managers in a factory may be required to manually create a list of inventory items to be picked up by workers. Uncertainty in predicting the appropriate pick-up time due to differences in worker-determined routes may make it difficult for managers to generate a fixed schedule for delivery to the assembly line. To address these problems, we propose OPaPi, a human-centric system that improves the efficiency of manufacturing by optimizing parts pick-up routes and schedules. OPaPi leverages frequent pattern mining and the traveling salesman problem solver to suggest rack placement for more efficient routes. The system further employs interactive visualization to incorporate an expert’s domain knowledge and different manufacturing constraints for real-time adaptive decision making.
2018

Abstract

Close
The analysis of bipartite networks is critical in many application domains, such as studying gene expression in bio-informatics. One important task is missing link prediction, which infers the exis- tence of new links based on currently observed ones. However, in practice, analysts need to utilize their domain knowledge based on the algorithm outputs in order to make sense of the results. We pro- pose a novel visual analysis framework, MissBi, which allows for examining and understanding missing links in bipartite networks. Some initial feedback from a management school professor has demonstrated the effectiveness of the tool.

InkPlanner: Supporting Prewriting via Intelligent Visual Diagramming

Publication Details
  • IEEE Transactions on Visualization and Computer Graphics (Proceedings of VAST 2018)
  • Oct 21, 2018

Abstract

Close
Prewriting is the process of generating and organizing ideas before drafting a document. Although often overlooked by novice writers and writing tool developers, prewriting is a critical process that improves the quality of a final document. To better understand current prewriting practices, we first conducted interviews with writing learners and experts. Based on the learners’ needs and experts’ recommendations, we then designed and developed InkPlanner, a novel pen and touch visualization tool that allows writers to utilize visual diagramming for ideation during prewriting. InkPlanner further allows writers to sort their ideas into a logical and sequential narrative by using a novel widget— NarrativeLine. Using a NarrativeLine, InkPlanner can automatically generate a document outline to guide later drafting exercises. Inkplanner is powered by machine-generated semantic and structural suggestions that are curated from various texts. To qualitatively review the tool and understand how writers use InkPlanner for prewriting, two writing experts were interviewed and a user study was conducted with university students. The results demonstrated that InkPlanner encouraged writers to generate more diverse ideas and also enabled them to think more strategically about how to organize their ideas for later drafting.

The Effect of Edge Bundling and Seriation on Sensemaking of Biclusters in Bipartite Graphs

Publication Details
  • IEEE Transactions on Visualization and Computer Graphics
  • Jul 31, 2018

Abstract

Close
Exploring coordinated relationships (e.g., shared relationships between two sets of entities) is an important analytics task in a variety of real-world applications, such as discovering similarly behaved genes in bioinformatics, detecting malware collusions in cyber security, and identifying products bundles in marketing analysis. Coordinated relationships can be formalized as biclusters. In order to support visual exploration of biclusters, bipartite graphs based visualizations have been proposed, and edge bundling is used to show biclusters. However, it suffers from edge crossings due to possible overlaps of biclusters, and lacks in-depth understanding of its impact on user exploring biclusters in bipartite graphs. To address these, we propose a novel bicluster-based seriation technique that can reduce edge crossings in bipartite graphs drawing and conducted a user experiment to study the effect of edge bundling and this proposed technique on visualizing biclusters in bipartite graphs. We found that they both had impact on reducing entity visits for users exploring biclusters, and edge bundles helped them find more justified answers. Moreover, we identified four key trade-offs that inform the design of future bicluster visualizations. The study results suggest that edge bundling is critical for exploring biclusters in bipartite graphs, which helps to reduce low-level perceptual problems and support high-level inferences.
Publication Details
  • ACM Intl. Conf. on Multimedia Retrieval (ICMR)
  • Jun 11, 2018

Abstract

Close
Massive Open Online Course (MOOC) platforms have scaled online education to unprecedented enrollments, but remain limited by their rigid, predetermined curricula. Increasingly, professionals consume this content to augment or update specific skills rather than complete degree or certification programs. To better address the needs of this emergent user population, we describe a visual recommender system called MOOCex. The system recommends lecture videos {\em across} multiple courses and content platforms to provide a choice of perspectives on topics. The recommendation engine considers both video content and sequential inter-topic relationships mined from course syllabi. Furthermore, it allows for interactive visual exploration of the semantic space of recommendations within a learner's current context.
Publication Details
  • Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
  • Apr 21, 2018

Abstract

Close
Massive Open Online Course (MOOC) platforms have scaled online education to unprecedented enrollments, but remain limited by their rigid, predetermined curricula. This paper presents MOOCex, a technique that can offer a more flexible learning experience for MOOCs. MOOCex can recommend lecture videos across different courses with multiple perspectives, and considers both the video content and also sequential inter-topic relationships mined from course syllabi. MOOCex is also equipped with interactive visualization allowing learners to explore the semantic space of recommendations within their current learning context. The results of comparisons to traditional methods, including content-based recommendation and ranked list representation, indicate the effectiveness of MOOCex. Further, feedback from MOOC learners and instructors suggests that MOOCex enhances both MOOC-based learning and teaching.

T-Cal: Understanding Team Conversation Data with Calendar-based Visualization

Publication Details
  • Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
  • Apr 21, 2018

Abstract

Close
Understanding team communication and collaboration patterns is critical for improving work efficiency in organizations. This paper presents an interactive visualization system, T-Cal, that supports the analysis of conversation data from modern team messaging platforms (e.g., Slack). T-Cal employs a user-familiar visual interface, a calendar, to enable seamless multi-scale browsing of data from different perspectives. T-Cal also incorporates a number of analytical techniques for disentangling interleaving conversations, extracting keywords, and estimating sentiment. The design of T-Cal is based on an iterative user-centered design process including field studies, requirements gathering, initial prototypes demonstration, and evaluation with domain users. The resulting two case studies indicate the effectiveness and usefulness of T-Cal in real-world applications, including student group chats during a MOOC and daily conversations within an industry research lab.
Publication Details
  • Multimedia Modeling 2018
  • Feb 5, 2018

Abstract

Close
This paper examines content-based recommendation in domains exhibiting sequential topical structure. An example is educational video, including Massive Open Online Courses (MOOCs) in which knowledge builds within and across courses. Conventional content-based or collaborative filtering recommendation methods do not exploit courses' sequential nature. We describe a system for video recommendation that combines topic-based video representation with sequential pattern mining of inter-topic relationships. Unsupervised topic modeling provides a scalable and domain-independent representation. We mine inter-topic relationships from manually constructed syllabi that instructors provide to guide students through their courses. This approach also allows the inclusion of multi-video sequences among the recommendation results. Integrating the resulting sequential information with content-level similarity provides relevant as well as diversified recommendations. Quantitative evaluation indicates that the proposed system, \textit{SeqSense}, recommends fewer redundant videos than baseline methods, and instead emphasizes results consistent with mined topic transitions.
2017
Publication Details
  • IEEE Transactions on Visualization and Computer Graphics (Proceedings of VAST 2017)
  • Oct 1, 2017

Abstract

Close
Discovering and analyzing biclusters, i.e., two sets of related entities with close relationships, is a critical task in many real-world applications, such as exploring entity co-occurrences in intelligence analysis, and studying gene expression in bio-informatics. While the output of biclustering techniques can offer some initial low-level insights, visual approaches are required on top of that due to the algorithmic output complexity.This paper proposes a visualization technique, called BiDots, that allows analysts to interactively explore biclusters over multiple domains. BiDots overcomes several limitations of existing bicluster visualizations by encoding biclusters in a more compact and cluster-driven manner. A set of handy interactions is incorporated to support flexible analysis of biclustering results. More importantly, BiDots addresses the cases of weighted biclusters, which has been underexploited in the literature. The design of BiDots is grounded by a set of analytical tasks derived from previous work. We demonstrate its usefulness and effectiveness for exploring computed biclusters with an investigative document analysis task, in which suspicious people and activities are identified from a text corpus.

Supporting Handoff in Asynchronous Collaborative Sensemaking Using Knowledge-Transfer Graphs

Publication Details
  • IEEE Transactions on Visualization and Computer Graphics (Proceedings of VAST 2017)
  • Oct 1, 2017

Abstract

Close
During asynchronous collaborative analysis, handoff of partial findings is challenging because externalizations produced by analysts may not adequately communicate their investigative process. To address this challenge, we developed techniques to automatically capture and help encode tacit aspects of the investigative process based on an analyst’s interactions, and streamline explicit authoring of handoff annotations. We designed our techniques to mediate awareness of analysis coverage, support explicit communication of progress and uncertainty with annotation, and implicit communication through playback of investigation histories. To evaluate our techniques, we developed an interactive visual analysis system, KTGraph, that supports an asynchronous investigative document analysis task. We conducted a two-phase user study to characterize a set of handoff strategies and to compare investigative performance with and without our techniques. The results suggest that our techniques promote the use of more effective handoff strategies, help increase an awareness of prior investigative process and insights, as well as improve final investigative outcomes.

How Do Ancestral Traits Shape Family Trees over Generations?

Publication Details
  • IEEE Transactions on Visualization and Computer Graphics (Proceedings of VAST 2017)
  • Oct 1, 2017

Abstract

Close
Whether and how does the structure of family trees differ by ancestral traits over generations? This is a fundamental question regarding the structural heterogeneity of family trees for the multi-generational transmission research. However, previous work mostly focuses on parent-child scenarios due to the lack of proper tools to handle the complexity of extending the research to multi-generational processes. Through an iterative design study with social scientists and historians, we develop TreeEvo that assists users to generate and test empirical hypotheses for multi-generational research. TreeEvo summarizes and organizes family trees by structural features in a dynamic manner based on a traditional Sankey diagram. A pixel-based technique is further proposed to compactly encode trees with complex structures in each Sankey Node. Detailed information of trees is accessible through a space-efficient visualization with semantic zooming. Moreover, TreeEvo embeds Multinomial Logit Model (MLM) to examine statistical associations between tree structure and ancestral traits. We demonstrate the effectiveness and usefulness of TreeEvo through an in-depth case-study with domain experts using a real-world dataset (containing 54,128 family trees of 126,196 individuals).