Jian Zhao, Ph.D.

Research Scientist

Jian Zhao

Jian joined FXPAL in 2016. His research lies in the general areas of Information Visualization (InfoVis) and Human-Computer Interaction (HCI). He contributes on the design, development, and evaluation of highly interactive visualization systems to enable data enthusiasts to effectively discover and communicate insightful knowledge in real-world applications and datasets.

Jian received his Ph.D. at the Department of Computer Science, University of Toronto in July 2015. For more information, please visit his personal webpage.

Co-Authors

Publications

2018

InkPlanner: Supporting Prewriting via Intelligent Visual Diagramming

Publication Details
  • IEEE Transactions on Visualization and Computer Graphics (Proceedings of VAST 2018)
  • Oct 21, 2018

Abstract

Close
Prewriting is the process of generating and organizing ideas before drafting a document. Although often overlooked by novice writers and writing tool developers, prewriting is a critical process that improves the quality of a final document. To better understand current prewriting practices, we first conducted interviews with writing learners and experts. Based on the learners’ needs and experts’ recommendations, we then designed and developed InkPlanner, a novel pen and touch visualization tool that allows writers to utilize visual diagramming for ideation during prewriting. InkPlanner further allows writers to sort their ideas into a logical and sequential narrative by using a novel widget— NarrativeLine. Using a NarrativeLine, InkPlanner can automatically generate a document outline to guide later drafting exercises. Inkplanner is powered by machine-generated semantic and structural suggestions that are curated from various texts. To qualitatively review the tool and understand how writers use InkPlanner for prewriting, two writing experts were interviewed and a user study was conducted with university students. The results demonstrated that InkPlanner encouraged writers to generate more diverse ideas and also enabled them to think more strategically about how to organize their ideas for later drafting.

The Effect of Edge Bundling and Seriation on Sensemaking of Biclusters in Bipartite Graphs

Publication Details
  • IEEE Transactions on Visualization and Computer Graphics
  • Jul 31, 2018

Abstract

Close
Exploring coordinated relationships (e.g., shared relationships between two sets of entities) is an important analytics task in a variety of real-world applications, such as discovering similarly behaved genes in bioinformatics, detecting malware collusions in cyber security, and identifying products bundles in marketing analysis. Coordinated relationships can be formalized as biclusters. In order to support visual exploration of biclusters, bipartite graphs based visualizations have been proposed, and edge bundling is used to show biclusters. However, it suffers from edge crossings due to possible overlaps of biclusters, and lacks in-depth understanding of its impact on user exploring biclusters in bipartite graphs. To address these, we propose a novel bicluster-based seriation technique that can reduce edge crossings in bipartite graphs drawing and conducted a user experiment to study the effect of edge bundling and this proposed technique on visualizing biclusters in bipartite graphs. We found that they both had impact on reducing entity visits for users exploring biclusters, and edge bundles helped them find more justified answers. Moreover, we identified four key trade-offs that inform the design of future bicluster visualizations. The study results suggest that edge bundling is critical for exploring biclusters in bipartite graphs, which helps to reduce low-level perceptual problems and support high-level inferences.
Publication Details
  • ACM Intl. Conf. on Multimedia Retrieval (ICMR)
  • Jun 11, 2018

Abstract

Close
Massive Open Online Course (MOOC) platforms have scaled online education to unprecedented enrollments, but remain limited by their rigid, predetermined curricula. Increasingly, professionals consume this content to augment or update specific skills rather than complete degree or certification programs. To better address the needs of this emergent user population, we describe a visual recommender system called MOOCex. The system recommends lecture videos {\em across} multiple courses and content platforms to provide a choice of perspectives on topics. The recommendation engine considers both video content and sequential inter-topic relationships mined from course syllabi. Furthermore, it allows for interactive visual exploration of the semantic space of recommendations within a learner's current context.
Publication Details
  • Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
  • Apr 21, 2018

Abstract

Close
Massive Open Online Course (MOOC) platforms have scaled online education to unprecedented enrollments, but remain limited by their rigid, predetermined curricula. This paper presents MOOCex, a technique that can offer a more flexible learning experience for MOOCs. MOOCex can recommend lecture videos across different courses with multiple perspectives, and considers both the video content and also sequential inter-topic relationships mined from course syllabi. MOOCex is also equipped with interactive visualization allowing learners to explore the semantic space of recommendations within their current learning context. The results of comparisons to traditional methods, including content-based recommendation and ranked list representation, indicate the effectiveness of MOOCex. Further, feedback from MOOC learners and instructors suggests that MOOCex enhances both MOOC-based learning and teaching.

T-Cal: Understanding Team Conversation Data with Calendar-based Visualization

Publication Details
  • Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
  • Apr 21, 2018

Abstract

Close
Understanding team communication and collaboration patterns is critical for improving work efficiency in organizations. This paper presents an interactive visualization system, T-Cal, that supports the analysis of conversation data from modern team messaging platforms (e.g., Slack). T-Cal employs a user-familiar visual interface, a calendar, to enable seamless multi-scale browsing of data from different perspectives. T-Cal also incorporates a number of analytical techniques for disentangling interleaving conversations, extracting keywords, and estimating sentiment. The design of T-Cal is based on an iterative user-centered design process including field studies, requirements gathering, initial prototypes demonstration, and evaluation with domain users. The resulting two case studies indicate the effectiveness and usefulness of T-Cal in real-world applications, including student group chats during a MOOC and daily conversations within an industry research lab.
Publication Details
  • Multimedia Modeling 2018
  • Feb 5, 2018

Abstract

Close
This paper examines content-based recommendation in domains exhibiting sequential topical structure. An example is educational video, including Massive Open Online Courses (MOOCs) in which knowledge builds within and across courses. Conventional content-based or collaborative filtering recommendation methods do not exploit courses' sequential nature. We describe a system for video recommendation that combines topic-based video representation with sequential pattern mining of inter-topic relationships. Unsupervised topic modeling provides a scalable and domain-independent representation. We mine inter-topic relationships from manually constructed syllabi that instructors provide to guide students through their courses. This approach also allows the inclusion of multi-video sequences among the recommendation results. Integrating the resulting sequential information with content-level similarity provides relevant as well as diversified recommendations. Quantitative evaluation indicates that the proposed system, \textit{SeqSense}, recommends fewer redundant videos than baseline methods, and instead emphasizes results consistent with mined topic transitions.
2017
Publication Details
  • IEEE Transactions on Visualization and Computer Graphics (Proceedings of VAST 2017)
  • Oct 1, 2017

Abstract

Close
Discovering and analyzing biclusters, i.e., two sets of related entities with close relationships, is a critical task in many real-world applications, such as exploring entity co-occurrences in intelligence analysis, and studying gene expression in bio-informatics. While the output of biclustering techniques can offer some initial low-level insights, visual approaches are required on top of that due to the algorithmic output complexity.This paper proposes a visualization technique, called BiDots, that allows analysts to interactively explore biclusters over multiple domains. BiDots overcomes several limitations of existing bicluster visualizations by encoding biclusters in a more compact and cluster-driven manner. A set of handy interactions is incorporated to support flexible analysis of biclustering results. More importantly, BiDots addresses the cases of weighted biclusters, which has been underexploited in the literature. The design of BiDots is grounded by a set of analytical tasks derived from previous work. We demonstrate its usefulness and effectiveness for exploring computed biclusters with an investigative document analysis task, in which suspicious people and activities are identified from a text corpus.

Supporting Handoff in Asynchronous Collaborative Sensemaking Using Knowledge-Transfer Graphs

Publication Details
  • IEEE Transactions on Visualization and Computer Graphics (Proceedings of VAST 2017)
  • Oct 1, 2017

Abstract

Close
During asynchronous collaborative analysis, handoff of partial findings is challenging because externalizations produced by analysts may not adequately communicate their investigative process. To address this challenge, we developed techniques to automatically capture and help encode tacit aspects of the investigative process based on an analyst’s interactions, and streamline explicit authoring of handoff annotations. We designed our techniques to mediate awareness of analysis coverage, support explicit communication of progress and uncertainty with annotation, and implicit communication through playback of investigation histories. To evaluate our techniques, we developed an interactive visual analysis system, KTGraph, that supports an asynchronous investigative document analysis task. We conducted a two-phase user study to characterize a set of handoff strategies and to compare investigative performance with and without our techniques. The results suggest that our techniques promote the use of more effective handoff strategies, help increase an awareness of prior investigative process and insights, as well as improve final investigative outcomes.

How Do Ancestral Traits Shape Family Trees over Generations?

Publication Details
  • IEEE Transactions on Visualization and Computer Graphics (Proceedings of VAST 2017)
  • Oct 1, 2017

Abstract

Close
Whether and how does the structure of family trees differ by ancestral traits over generations? This is a fundamental question regarding the structural heterogeneity of family trees for the multi-generational transmission research. However, previous work mostly focuses on parent-child scenarios due to the lack of proper tools to handle the complexity of extending the research to multi-generational processes. Through an iterative design study with social scientists and historians, we develop TreeEvo that assists users to generate and test empirical hypotheses for multi-generational research. TreeEvo summarizes and organizes family trees by structural features in a dynamic manner based on a traditional Sankey diagram. A pixel-based technique is further proposed to compactly encode trees with complex structures in each Sankey Node. Detailed information of trees is accessible through a space-efficient visualization with semantic zooming. Moreover, TreeEvo embeds Multinomial Logit Model (MLM) to examine statistical associations between tree structure and ancestral traits. We demonstrate the effectiveness and usefulness of TreeEvo through an in-depth case-study with domain experts using a real-world dataset (containing 54,128 family trees of 126,196 individuals).