Matthew Lee, Ph.D.

Senior Research Scientist

Matthew Lee

Matt joined FXPAL in 2016. His research focuses on personal informatics, behavior change, enhancing collaboration through reflection, and Internet of Things. Prior to FXPAL, Matt was at Philips Research where he worked on technologies for patient engagement, patient-generated health data, and clinical decision support.

He received his Ph.D. from the Human-Computer Interaction Institute from the School of Computer Science at Carnegie Mellon. He received a Bachelor’s degree in Cognitive Science and Computer Science from the University of California, Berkeley.

For more information, see Matt’s personal page.

 

Co-Authors

Publications

2020

Abstract

Close
Managing post-surgical pain is critical for successful surgical outcomes. One of the challenges of pain management is accurately assessing the pain level of patients. Self-reported numeric pain ratings are limited because they are subjective, can be affected by mood, and can influence the patient’s perception of pain when making comparisons. In this paper, we introduce an approach that analyzes 2D and 3D facial keypoints of post-surgical patients to estimate their pain intensity level.Our approach leverages the previously unexplored capabilities of a smartphone to capture a dense3D representation of a person’s face as input for pain intensity level estimation. Our contributions are a data collection study with post-surgical patients to collect ground-truth labeled sequences of2D and 3D facial keypoints for developing a pain estimation algorithm, a pain estimation model that uses multiple instance learning to overcome inherent limitations in facial keypoint sequences, and the preliminary results of the pain estimation model using 2D and 3D features with comparisons of alternate approaches.

Abstract

Close
Flow-like experiences at work are important for productivity and worker well-being. However, it is difficult to objectively detect when workers are experiencing flow in their work. In this paper, we investigate how to predict a worker's focus state based on physiological signals. We conducted a lab study to collect physiological data from knowledge workers experienced different levels of flow while performing work tasks. We used the nine characteristics of flow to design tasks that would induce different focus states. A manipulation check using the Flow Short Scale verified that participants experienced three distinct flow states, one overly challenging non-flow state, and two types of flow states, balanced flow, and automatic flow. We built machine learning classifiers that can distinguish between non-flow and flow states with 0.889 average AUC and rest states from working states with 0.98 average AUC. The results show that physiological sensing can detect focused flow states of knowledge workers and can enable ways to for individuals and organizations to improve both productivity and worker satisfaction.
Publication Details
  • CHI 2020
  • Apr 25, 2020

Abstract

Close
The demands of daily work offer few opportunities for workers to take stock of their own progress, big or small, which can lead to lower motivation, engagement, and higher risk of burnout. We present Highlight Matome, a personal online tool that encourages workers to quickly record and rank a single work highlight each day, helping them gain awareness of their own successes. We describe results from a field experiment investigating our tool's effectiveness for improving workers' engagement, perceptions, and affect. Thirty-three knowledge workers in Japan and the U.S. used Highlight Matome for six weeks. Our results show that using our tool for less than one minute each day significantly increased measures of work engagement, dedication, and positivity. A qualitative analysis of the highlights offers a window into participants' emotions and perceptions. We discuss implications for theories of inner work life and worker well-being.
2019
Publication Details
  • ACM SIGMOD/PODS workshop on Human-In-the-Loop Data Analytics (HILDA)
  • Jun 30, 2019

Abstract

Close
Manufacturing environments require changes in work procedures and settings based on changes in product demand affecting the types of products for production. Resource re-organization and time needed for worker adaptation to such frequent changes can be expensive. For example, for each change, managers in a factory may be required to manually create a list of inventory items to be picked up by workers. Uncertainty in predicting the appropriate pick-up time due to differences in worker-determined routes may make it difficult for managers to generate a fixed schedule for delivery to the assembly line. To address these problems, we propose OPaPi, a human-centric system that improves the efficiency of manufacturing by optimizing parts pick-up routes and schedules. OPaPi leverages frequent pattern mining and the traveling salesman problem solver to suggest rack placement for more efficient routes. The system further employs interactive visualization to incorporate an expert’s domain knowledge and different manufacturing constraints for real-time adaptive decision making.
Publication Details
  • CHI 2019
  • Apr 27, 2019

Abstract

Close
Work breaks -- both physical and digital -- play an important role in productivity and workplace wellbeing. Yet, the growing availability of digital distractions from online content can turn breaks into prolonged "cyberloafing". In this paper, we present UpTime, a system that aims to support workers' transitions from breaks back to work--moments susceptible to digital distractions. Combining a browser extension and chatbot, users interact with UpTime through proactive and reactive chat prompts. By sensing transitions from inactivity, UpTime helps workers avoid distractions by automatically blocking distracting websites temporarily, while still giving them control to take necessary digital breaks. We report findings from a 3-week comparative field study with 15 workers. Our results show that automatic, temporary blocking at transition points can significantly reduce digital distractions and stress without sacrificing workers' sense of control. Our findings, however, also emphasize that overloading users' existing communication channels for chatbot interaction should be done thoughtfully.
Publication Details
  • IEEE 2nd International Conference on Multimedia Information Processing and Retrieval
  • Mar 14, 2019

Abstract

Close
We present an approach to detect speech impairments from video of people with aphasia, a neurological condition that affects the ability to comprehend and produce speech. To counter inherent privacy issues, we propose a cross-media approach using only visual facial features to detect speech properties without listening to the audio content of speech. Our method uses facial landmark detections to measure facial motion over time. We show how to detect speech and pause instances based on temporal mouth shape analysis and identify repeating mouth patterns using a dynamic warping mechanism. We relate our developed features for pause frequency, mouth pattern repetitions, and pattern variety to actual symptoms of people with aphasia in the AphasiaBank dataset. Our evaluation shows that our developed features are able to reliably differentiate dysfluent speech production of people with aphasia from those without aphasia with an accuracy of 0.86. A combination of these handcrafted features and further statistical measures on talking and repetition improves classification performance to an accuracy of 0.88.
2017
Publication Details
  • Computer-Supported Cooperative Work and Social Computing
  • Nov 1, 2017

Abstract

Close
Video telehealth is growing to allow more clinicians to see patients from afar. As a result, clinicians, typically trained for in-person visits, must learn to communicate both health information and non-verbal affective signals to patients through a digital medium. We introduce a system called ReflectLive that senses and provides real-time feedback about non-verbal communication behaviors to clinicians so they can improve their communication behaviors. A user evaluation with 10 clinicians showed that the real-time feedback helped clinicians maintain better eye contact with patients and was not overly distracting. Clinicians reported being more aware of their non-verbal communication behaviors and reacted positively to summaries of their conversational metrics, motivating them to want to improve. Using ReflectLive as a probe, we also discuss the benefits and concerns around automatically quantifying the “soft skills” and complexities of clinician-patient communication, the controllability of behaviors, and the design considerations for how to present real-time and summative feedback to clinicians.

Abstract

Close
Work breaks can play an important role in the mental and physical well-being of workers and contribute positively to productivity. In this paper we explore the use of activity-, physiological-, and indoor-location sensing to promote mobility during work-breaks. While the popularity of devices and applications to promote physical activity is growing, prior research highlights important constraints when designing for the workplace. With these constraints in mind, we developed BreakSense, a mobile application that uses a Bluetooth beacon infrastructure, a smartphone and a smartwatch to encourage mobility during breaks with a game-like design. We discuss constraints imposed by design for work and the workplace, and highlight challenges associated with the use of noisy sensors and methods to overcome them. We then describe a short deployment of BreakSense within our lab that examined bound vs. unbound augmented breaks and how they affect users’ sense of completion and readiness to work.
2016

The Connected [Work]Life

Publication Details
  • HCIC Workshop
  • Jun 19, 2016

Abstract

Close
As workstyles change to include more dynamic contexts and denser spaces, connected objects and spaces in the workplace can play a bigger role in helping people get their work done, while also helping them navigate the continually blending boundaries between work- and home lives. In this talk, we argue that the workplace is particularly well-suited for realizing the "connected life" by including both company-initiated sensing in the workplace and personal tracking devices introduced by individual workers. We describe some examples of ubiquitous sensing in the workplace, and future opportunities as well as open technical and ethical issues for designing for the connected [work]life.