Building User Profiles from Shared Photos


In this paper, we analyze the association between a social media user’s photo content and their interests. Visual content of photos is analyzed using state-of-the-art deep learning based automatic concept recognition. An aggregate visual concept signature is thereby computed for each user. User tags manually applied to their photos are also used to construct a tf-idf based signature per user. We also obtain social groups that users join to represent their social interests. In an effort to compare the visual-based versus tag-based user profiles with social interests, we compare corresponding similarity matrices with a reference similarity matrix based on users’ group memberships. A random baseline is also included that groups users by random sampling while preserving the actual group sizes. A difference metric is proposed and it is shown that the combination of visual and text features better approximates the group-based similarity matrix than either modality individually. We also validate the visual analysis against the reference inter-user similarity using the Spearman rank correlation coefficient. Finally we cluster users by their visual signatures and rank clusters using a cluster uniqueness criteria.