
 

 

Figure 1: EMM dataset construction and identification 

 

Large-Scale EMM Identification Based on Geometry- 

Constrained Visual Word Correspondence Voting 
 

Xin Yang
1
,   Qiong Liu

2
,   Chunyuan Liao

2
,   Kwang-Ting Cheng

1
, Andreas Girgensohn

2
  

1
 Dept. of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA 

2 
FX Palo Alto Laboratory, 3400 Hillview Avenue, Bldg.4, Palo Alto, CA 94304, USA 

xinyang@umail.ucsb.edu, {liu, liao}@fxpal.com, timcheng@ece.ucsb.edu, andreasg@fxpal.com 

 

 

ABSTRACT 

We present a large-scale Embedded Media Marker (EMM) 

identification system which allows users to retrieve relevant 

dynamic media associated with a static paper document via 

camera-phones. The user supplies a query image by capturing an 

EMM-signified patch of a paper document through a camera 

phone. The system recognizes the query and in turn retrieves and 

plays the corresponding media on the phone. 

Accurate image matching is crucial for positive user experience in 

this application.  To address the challenges posed by large 

datasets and variation in camera-phone-captured query images, we 

introduce a novel image matching scheme based on geometrically 

consistent correspondences. A hierarchical scheme, combined 

with two constraining methods, is designed to detect geometric 

constrained correspondences between images. A spatial 

neighborhood search approach is further proposed to address 

challenging cases of query images with a large translational shift. 

Experimental results on a 200k+ dataset show that our solution 

achieves high accuracy with low memory and time complexity 

and outperforms the baseline bag-of-words approach.  

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval – information filtering, search process.   

I.4.9 [Computing Methodologies]: Image Processing and 

Computer Vision – Applications.  

General Terms 

Algorithms, Design, Experimentation. 

Keywords 

camera-phone applications, EMM identification, image matching, 

hierarchical gridding, approximate geometric verification, 

translation compensation. 

1. INTRODUCTION 
Techniques of linking dynamic media with a static paper 

document via camera phones have many interesting applications, 

such as multimedia enhanced books and multimedia 

advertisement on paper. Techniques based on 2D barcodes [10] 

are commonly used, which can be easily recognized via modern 

camera-phones. However, barcodes, when printed on a document 

for association with specific document contents, are visually 

obtrusive and could interfere with the document layout. Thus 

several current systems [11,12,13,17] rely on the document 

content itself for identification of media association. For example, 

from the camera-phone captured query image, SnapTell [12] and 

Kooba [13] extract visual features, and HOTPAPER [11] utilizes 

the layout of word boxes to determine the source page, and the 

location on the page for linkage to the corresponding media data. 

However, these methods can hardly achieve good accuracy and 

scalability without clear specifications of which contents/locations 

on a paper document are linked to media data. A query image 

captured aimlessly on a document without specific guidance may 

result in various distortions and thus lead to low accuracy. In 

addition, as the camera-phone may capture any part of the page, 

the system would need to characterize and index the entire 

document pages [11], resulting in high time/memory cost for large 

datasets. To alleviate these problems, an EMM identification 

system has recently been introduced [7,8], which utilizes 

meaningful awareness-markers overlaid on the original paper 

document to guide image capture and limit processing cost. 

However, the current EMM identification system [7, 8] relies on 
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Figure 2: query images and indexed images of (a) EMM 

identification; (b) partial duplicate detection;  (c) image-

based object recognition 

 

general local-feature-based matching approaches without taking 

into account any application-specific matching constraints for this 

application. As a result, it suffers low accuracy and high 

memory/time complexity. To address this problem, this paper 

analyzes the unique characteristics of image matching for EMM 

identification and proposes a novel image matching scheme which 

utilizes such characteristics to improve accuracy and to reduce 

memory and time complexity.   

1.1 EMM identification 
Embedded Media Markers (EMMs) [7,8] are nearly transparent 

markers printed on paper documents at certain locations which are 

linked with additional media information. Analogous to 

hyperlinks, EMMs indicate the existence of links to digital media. 

Users can capture the EMM-signified document patch with a 

camera-phone to retrieve the associated digital media and view it 

on the phone. Figs. 1(a) and (b) show the original document with 

an EMM overlaid at the top-right corner and a close-up of an 

EMM-signified patch, respectively. For EMM-enriched 

documents, only the EMM-signified patches need to be 

characterized and indexed, which can greatly reduce the time and 

memory usage for feature extraction and enhance the accuracy 

because of the exclusion of noisy features which correspond to 

contents outside an EMM region. The EMMs can guide users to 

capture an EMM-signified region, yielding a query image with 

little distortion (as shown in Fig.1(c)). The task of EMM 

identification is therefore to match the camera-phone-captured 

query image to an original EMM-signified patch indexed in the 

dataset. 

1.2 Image Matching for EMM Identification 
Accuracy and scalability of image matching are crucial for large 

scale EMM applications, e.g. linking media for cyclopedia or 

daily newspapers over a period of multiple years. Several image 

matching approaches [1,2,3,4,9] have been proposed and 

successfully employed in similar applications, such as image-

based object recognition and near-/partial-duplicate detection. 

However, these generic methods could not utilize two particular 

matching constraints, namely “injection” and “approximate 

global geometric consistency” (AGGC for short), which are 

unique for the EMM identification. As a result, these methods 

unnecessarily cost more memory and time in order to achieve a 

satisfactory accuracy for this application.  

The injection constraint is enforced by the way of generating a 

query image in EMM identification, where a query image is a 

camera-captured version of an original EMM-signified patch, as 

shown in Fig. 2(a). This property implies that each detected 

“salient” region of a query image can be mapped to by at most one 

common region of the target image, i.e. “injective mapping”. 

Such constraint may not hold in near-/partial-duplicate image 

detection, where a query image could be generated by extensive 

digital editing of an original image. Fig. 2(b) illustrates an 

exemplary case that violates this constraint while needs to be 

targeted by partial-duplicate detection.  

The AGGC constraint is enforced by EMMs, which confine the 

geometric changes between a query image and its target within a 

small predictable range, so that the spatial layout of a query image 

should be globally consistent with that of its target image with 

high fidelity.  Such constraint does not always hold in other 

similar applications. Fig. 2(c) illustrates an example of two images 

containing the same object of very different scale. Matching them 

is required for object recognition applications, but is not expected 

for EMM identification.  

Limiting the scope of the search by taking into account these two 

constraints can help further increase accuracy and reduce memory 

and time complexity. In this paper, we propose a novel image 

matching scheme, which takes advantage of these two constraints. 

To achieve high accuracy, two constraining methods are designed 

based on multi-resolution gridding information to detect 

“injective” and “AGGC” correspondences and uses them for 

measuring image similarity. A spatial neighborhood search 

approach is further proposed to address challenging cases for 

which the query image has a large translational shift. To achieve 

scalability, a hierarchical strategy is proposed to compact the 

memory and limit the processing time.  Experiments based on a 

100k+ dataset for EMM identification show that our matching 

scheme can achieve 96.7% accuracy for document images and 

94.5% accuracy for natural images while cost less than 2GB 

memory usage and ~500ms  average indexing time. 

The rest of the paper is organized as follows: Section 2 overviews 

existing image matching techniques. Section 3 presents the goal, 

details, and special features of our matching scheme. In Section 4, 

we report the experimental results, followed by the conclusion in 

Section 5.  

2. EXISTING IMAGE MATCHING 

TECHNIQUES 
Most state-of-the-art image matching approaches rely on local 

feature representations [5] to achieve high accuracy. The current 

EMM identification system [7,8] matches each query local feature 

to an indexed feature by an approximate nearest neighbor search 

scheme, K-D tree, based on L2 distance. And then the number of 

matches, whose distances are within a predefined threshold, is 

used for ranking database images. Grauman et al. propose a 

pyramid matching scheme [14] which works by placing a 

sequence of increasingly coarser grids over the feature space and 

taking a weighted sum of the number of matches that occur at 

each level of resolution.  These schemes provide an accurate 

image similarity measure but the high memory and time 

complexity for storing and processing all the local features 

prohibit its use for large-scale databases. 

Bag-of-Words (BoW) matching [9] is an effective strategy to 

reduce memory usage and support fast matching via a scalable 



 

[1] This assumption doesn’t hold if the camera-phone is rotated by 90o, 180o 

or 270o when capturing a query image. But most modern smart-phones 

have an accelerometer to determine the orientation of the phone. In 

addition, an EMM should always be upright for normal reading.  Therefore, 

in the rest of the paper, the algorithm focuses only on cases with a rotation 

respect to the 0o axis. 
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Figure 3: EMM identification with Geometry-Constrained 

Visual Word Correspondence Voting. 

indexing scheme, e.g. an inverted file [15]. Typically, BoW 

matching quantizes local image descriptors into visual words and 

then computes the image similarity by counting the frequency of 

words co-occurrences. However, it completely ignores the spatial 

information; hence it may greatly degrade the accuracy. In order 

to enhance the accuracy for BoW matching, several approaches 

have been proposed to compensate the loss of spatial information. 

For example, geometric verification [5, 6], which is designed for 

general image-matching applications, is a popular scheme which 

verifies local correspondences by checking their homography 

consistency.  Wu et al. present a bundling feature matching 

scheme [1] for partial-duplicate image detection. In their approach, 

sets of local features are bundled into groups by MSER [16] 

detected regions, and robust geometric constraints are then 

enforced within each group. All these schemes yield more reliable 

local-region matches by enforcing various geometric constraints. 

However, these schemes are either too computationally expensive 

or designed to meet unique requirements for specific applications,   

thus cannot meet the needs for EMM identification.  

To some extent, spatial pyramid matching [2], which considers 

approximate global geometric correspondences, is suitable for 

EMM identification. The scheme partitions the image into 

increasingly finer sub-regions and computes histograms of local 

features found within each sub-region. To compute the similarity 

between two images the distance between histograms at each 

spatial level is weighted and summed together. However, this 

scheme cannot enforce “injection matching”, therefore cost 

unnecessary time to process lots of unqualified matches. In 

addition, without an efficient spatial information 

encoding/decoding strategy, the scheme needs to store all the 

histograms at every spatial level in memory; resulting in 

significant memory and time overheads. 

3. Geometry-Constrained Visual Word 

Correspondence Voting 

Fig. 3 illustrates the workflow of the proposed matching scheme - 

“Geometry-Constrained Visual Word Correspondence Voting” 

(GCCV for short). It consists of three major steps: (1) Initial 

“AGGC” correspondences construction places coarse-level grids 

over the image space and matches only those visual words 

residing in the same grids to one another.  All the indexed images 

are then ranked based on the “AGGC” correspondences; (2) 

Correspondence refinement partitions each top-ranked image into 

fine-resolution grids, and verifies the initial correspondences 

using the “injection” constraint at fine granularity; (3) Finally, the 

qualified correspondences are used for ranking database images 

and the top3–ranked images are returned to users for a final 

confirmation. To further reduce errors caused by large 

translational shifts, we propose a “translation compensation” 

algorithm which estimates the translation changes and roughly 

aligns images before searching for the qualified correspondences. 

In addition, a hierarchical encoding/decoding strategy is 

incorporated for efficiently storing and utilizing the multi-

resolution grid information.  

In the following, we describe the motivations, techniques and 

strengths of each step in details. 

3.1   Initial Correspondence Construction at 

Coarse Granularity  
The “AGGC” constraint implies that spatial layout of a query 

image should be globally consistent with that of its target image 

with high fidelity. Therefore, we can assume that the 

corresponding features should locate at similar locations of two 

respective images. Based on this assumption [1], we propose a 

matching scheme called Grid-Bag-of-Words (G-BOW) matching 

for finding initial correspondents which satisfy the “AGGC” 

constraint. G-BoW matching partitions an image into n equal-

sized grids and then matches a local feature fq of a query image to 

a local feature fidx of an indexed image if fq  and fidx are quantized 

into the same visual word by the quantizer q(.) and have the same 

grid-id.  That is, 

1    if ( ) ( ) &

( , )         - ( )  - ( )

0    otherwise 

q idx
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  (1) 

We can estimate the similarity for grid i by calculating the 

normalized sum of the G-BoW matching value for every query 

feature within a grid i, 
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q qi
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where |Iqi| and |Iidxi| are the total number of visual words within 

grid i of a query image and an indexed image, respectively. 

We then calculate the sum of the similarity scores of all grids, 

yielding the final image similarity between a query image Iq and 

an index image Iidx 

0

( , ) ( , )    
n

q idx qi idxi

i

sim I I sim I I



 

 (3) 

To illustrate the effectiveness of G-BoW matching, we compare 

the correspondences obtained by BoW matching with those from 

G-BoW matching using 4×4 grids. We estimate the homography 

using RANSAC [6] and then verify the obtained correspondences 

by geometric consistency. Fig. 4 displays the first 100 

correspondences from the two correspondence sets. In this 



 

 

(a) Bag-of-Words overlapping (codebook size = 100K) 

Qualified Correspondences Ratio = 47% 

 

(b) Grid-Bag-of-Words matching(codebook size = 100K) 

Qualified Correspondences Ratio = 75% 

Figure 4: Top 100 correspondences between a query image 

(right) and the target image (left) obtained by (a) BoW 

matching and (b) 4x4 G-BoW matching. We estimate the 

homography using RANSAC [6] and verified all the 

correspondences by geometric consistency. Red lines denote 

unqualified matches which are inconsistent with the 

homography between the two images, while green lines 

indicate the qualified matches. 

 

Algorithm 1. Approximate Geometric Verification (AGV) 

Definition: Minitial: initial correspondences;  Mall: all match 

candidates based on BoW overlapping; Hhomography: homography 

matrix;  Mfinal: final correspondences after verification  

for {TopK candidate images} 

 G-BOW matching  Minitial; 

 Homography estimation (Minitial) matrix Hhomography; 

 Align query image Iq with candidate image Icandidate using 

Hhomography.  

 Verify all match candidates Mall and obtain qualified 

matches Mfinal. 

 Update matching score Snew according to formula (2) and 

(3) 

end  

Re-rank TopK candidate images based on Snew. 

 

example, 75% of the matches obtained by 4×4 G-BoW satisfy the 

“AGGC” constraint; while only 47% qualified matches are 

obtained by BoW matching. 

Memory Overhead. To implement G-BoW matching efficiently, 

we can offline compute the grid id of indexed local features and 

record them in an indexing file. This solution costs only slightly 

more memory space for an indexing file than that produced by 

BoW. For example, to record a grid id of 4×4 grids, we only need 

to add 4 more bits for each local feature.  

Time Complexity. The time overhead for the matching includes: 

1) online grid-id computation for features of a query image; and 2) 

fetching the grid-ids of indexed features from memory and 

comparing them with those of a query image. However, the 

experimental results in Section 4.2 show that, involving grid 

matching does not increase the overall computation time. On the 

contrary, it slightly decreases the time due to the time saved from 

unnecessary matching of unqualified features and updating their 

matching scores.  

3.2 Correspondences Refinement at Fine 

Granularity  
G-BoW matching provides us initial correspondences satisfying 

the “AGGC” constraint. Whereas, such scheme cannot guarantee 

the “injective” condition when M features, which are quantized 

into the same grid, match to N (M≠N) features quantized into a 

common grid. Increasing the number of grids, i.e. enforcing a 

stricter spatial constraint, may help exclude unqualified 

correspondences but may also decrease the robustness to 

geometric changes. To solve this problem, we can employ 

homography verification [6] which can preserve the property of 

“injection” when the perspective differences between two images 

are small (such a condition is satisfied in EMM identification). In 

a traditional procedure, a hypothesized homography is first 

estimated based on candidate correspondences at the pixel level, 

and each correspondence is then verified by checking the 

homography consistency. Finally, the matching score is updated 

according to the number of the homography consistent 

correspondences.  

However, the traditional homography estimation and verification 

is not ideal due to the following reasons: 1) loading the pixel-level 

coordinates from the disks takes a lot of time; 2) homography 

estimation and verification using pixel-level spatial information is 

sensitive to keypoint location changes; 3) highly noisy match 

candidates obtained from BoW matching would significantly 

increase the time for deriving a transformation matrix and also 

decrease the accuracy of the estimated transformation parameters. 

To address these limitations, we propose a more efficient 

verification procedure at the grid level, called Approximate 

Geometric Verification (AGV). Fine-level grids information of 

the initial “AGGC” correspondences is used for estimating the 

homography matrix. All match candidates are then verified based 

on the homography consistency, where a match candidate is 

defined as a pair of features assigned to the same visual word. 

Algorithm1 summarizes our approximate geometric verification 

process. It’s worth mentioning that hard quantization for 

constructing “AGGC” correspondences may cause loss of 

qualified matches. Therefore, in this process we verify all match 

candidates to partially make up such loss. Regarding the choice of 

the number of grids for AGV, there is a tradeoff between 

distinguishability and space complexity: the more grids we use, 

the more precise the coordinates of correspondences, but the more 

bits needed to store the grid information. Empirically, we tested 

several choices including 16×16, 32×32 and 64×64, and 

concluded that 32×32 is the best choice.  



 

Table 1. Accuracy for test images with different 

transformations 

Transforms / Accuracy Top 1 Top 3 Top 100 

Translation 
Rotate 

Up-Scale 
Down-Scale 

0.66 
0.89 
0.95 
0.92 

0.69 
0.90 
0.95 
0.95 

0.85 
0.91 
0.96 
0.99 

 

Transforms / Accuracy Top 1 Top 3 Top 100 

Translation 
Rotate 

Up-Scale 
Down-Scale 

0.85 
0.89 
0.96 
0.93 

0.88 
0.92 
0.97 
0.96 

0.96 
0.93 
0.97 
1.00 

(Examining the effect of different transformations on accuracy 

for the testing set-540 (which will be described in Section 4.1). 

(a) Using G-BoW matching + AGV. (b) Using G-BoW matching 

+ TC + AGV. The vocabulary is trained based on 2k+ document 

images and a size of 100k. The size of the dataset is 100k+.) 

 

(a) 

(b) 

[2] Before retrieving the relevant media, the system returns the top-ranked 

results to the user for a final confirmation. In order to trade off between 

visibility and the number of displayed results, we usually show the top3 

images to the user on the cell-phone. Therefore, we are interested in Top3 

accuracy. 

AGV vs. traditional geometric verification. Regarding the 

runtime, AGV outperforms the traditional geometric verification 

due to two reasons.  First, quantized location information is more 

compact (e.g. a 32×32 grid id takes only 10bits per feature) and 

can more likely be stored in memory, which helps reduce or even 

eliminate the time for disk IO during the refinement step. Second, 

correspondences obtained by G-BoW matching are much less 

noisy than those from BoW matching, thus using them can greatly 

reduce the estimation time. Experimental results also show that, 

using correspondences from G-BoW matching achieves much 

higher identification accuracy than using those from BoW. 

3.3 Translation Compensation 
For challenging cases which incur significant geometric changes, 

a hard quantization may inevitably discard many qualified 

“AGGC” correspondences and consequently degrade the 

homography estimation accuracy or even completely miss the 

target image if the target image fails to be ranked within the top 

candidate list. For example, a translational shift that is larger than 

image_size/n1/2 (n is the number of grids used in the “AGGC” 

correspondence construction step) will completely misalign all the 

grids. As a result, none of the “AGGC” correspondences can be 

detected for the target image. Therefore, adjustment for 

compensating the errors caused by misalignment is crucial for 

achieving good identification accuracy. 

Before tackling this problem, we first evaluated the top1, top3 [2] 

and top100 accuracy with respect to the four observed geometric 

transformations and Table 1 summarizes the results. As shown in 

Table 1(a), for query images with large rotation and scale changes, 

the top1 and top3 accuracy numbers are close to that of top100 

and are sufficiently high for satisfactory user experience. 

However, for query images with large translational shifts, the top1 

and top3 accuracy numbers dropped dramatically. In addition, 

there exists a large gap (19%) between the top1 accuracy and the 

top100 accuracy. This result confirms that significant loss of 

“AGGC” matches would hurt the effectiveness of approximate 

geometric verification. Therefore, in the following, we propose a 

translation compensation algorithm to address the translation-

caused errors.  

A straightforward solution to solving the misalignment problem 

caused by hard-quantized grids is using a soft spatial assignment. 

In this simple solution, we assign a point to each of the eight 

neighboring grids in addition to the grid where the point falls in. 

However, this simple strategy also introduces extra noises and 

consequently decreases the accuracy and increases the runtime.  In 

most cases, out of nine quantized directions, there is only one 

direction which can best approximate the real translation change. 

Thus, most points assigning to the other wrong grids become 

noise. 

To minimize translation-caused errors, we propose a better 

solution, which estimates the best direction for translation 

compensation between two images and then assigns all the points 

to this estimated direction. The idea is based on the fact that if all 

points are shifted towards the best direction for translation 

compensation, the majority of grids should achieve the maximum 

similarity score (based on Formula 2). In other words, the 

direction, among all nine directions, which results in the 

maximum matching scores over all the grids would the best 

direction for translation compensation. After obtaining the best 

translation direction, each point is then assigned to this direction 

for finding “AGGC” correspondences. Therefore, we can derive 

set Mbest which contains correspondences between words of the 

current grid and words of the best neighboring grid.  To 

compensate the errors caused by translation changes, we compute 

the matching score and estimate the homography based on Mbest. 

Table 1(b) shows the accuracy improvement after using 

translation compensation. The accuracy for translated testing 

images is greatly enhanced for all three settings. At the same time 

the accuracy remains the same, or even becomes better, for the 

test cases with other transformations. 

3.4 Hierarchical Encoding / Decoding  
An efficient strategy for storing and decoding the multi-resolution 

spatial information should meet the following three objectives: 1) 

taking as little memory space as possible; 2) efficiently computing 

the desired information, including the coarse-level grid id, the 

neighboring grid id, and the fine-level grid id; 3) easy to adjust 

the parameters, such as number of coarse-level grids.  In this 

section, we present a hierarchical encoding and decoding strategy 

which is designed to meet these objectives.  Each image is 

hierarchically quantized into 2k×2k grids: an image is firstly 

partitioned into 2×2 grids and then each grid is iteratively 

subdivided into 2×2 grids, yielding 2k × 2k grids at level k, as 

shown in Fig. 5. Then each grid at level k is encoded by 

coordinates (xi, yi), (1 ≤ i ≤ k), uniquely denoting one of the 4 

positions in the upper level grid (xi-1, yi-1).  Finally the coordinates 

at all levels are concatenated together to form a bit string, as 

shown in Fig. 5. 

Memory complexity: Given the number of the finest-level grids, 

this scheme takes least amount of memory space by embedding all 

the coarser-level information into the corresponding finest-level 

grid id.  In addition, such information can be bundled with image 

id of each local feature and stored in the inverted file for fast 

access. Fig. 6 shows the structure of our index. Each visual word 

has an entry in the index that contains a list of images in which 

the visual word appears. We use an integer to record the image 

and geometric information: the left most 22 bits is utilized to 



 

 

Figure 5. Hierarchical Quantization and Encoding 

 
 

Figure 6. Inverted file structure. “image ID” and “grid ID” 

are encoded together into an integer. “Features count” is the 

number of feature records of current grid in one image.   

 

record the image ID, the remaining 10 bits is employed to record 

the hierarchical geometric information. This format supports at 

most 4 million indexed images, and the finest spatial resolution is 

32×32. 

Time complexity: This hierarchal strategy can parse all the 

required information using a small number of bit/add/subtract 

operations, which is very efficient in practical use.    

4. EXPERIMENTS 
In this section, we first introduce our database and two manually-

captured testing sets for EMM identification. Then we report the 

performance comparison of the proposed matching scheme with 

the baseline bag-of-words approach [15]. Finally, we provide 

experimental results to exam the effects of different parameter 

settings and training images on the identification accuracy.  

4.1 Database Description 
4.1.1 Database 
Our database contains three datasets: 1) EMM-ICME2K - 

generated from the ICME06 proceedings, which has 2188 letter-

size (8.5”x11”) document pages with text, images, and figures; 2) 

EMM-Oxford5K - constructed from Oxford5K dataset consisting 

of 5062 natural images including oxford buildings, groups of 

people, etc; 3) EMM-Flickr200K – generated from 200K 

distracting images arbitrarily retrieved from Flickr. In order to 

evaluate the performance with respect to different dataset sizes, 

we also built four smaller datasets - 10K, 20K, 50K, and 100K 

respectively. 

All the database images are pre-processed using the following 

procedures: we overlay one EMM via the authoring tool [8] on 

each image and then crop a square region whose center is aligned 

with the center of the EMM with its side-length equal to 1.42 

times the boundary-circle diameter of the EMM feature (refer to 

[8] for more details). After that, all the cropped images are 

normalized to 707×707 for the same reason presented in [8]. Figs. 

7 (a) and (g) show two exemplar database images from EMM–

Oxford5K and EMM-ICME2K respectively. 

4.1.2 Testing Set 
To evaluate the performance on different types of images, we 

constructed two testing sets: 1) testing set-540 for document 

images and (2) testing set-595 for natural images.  

To establish the “ground truth” for these two sets, we randomly 

select 108 pages from the ICME06-corpus, 59 images containing 

buildings and 60 images containing groups of people from 

Oxford5k. For each page or image, we manually took five pictures 

of the EMM-signified patch: one image was taken with little 

geometric change and the other four images were taken by 1) 

shifting the EMM to the edge of the camera screen; 2) rotating the 

camera upto ±45o; 3) moving the camera closer to the document 

so that the boundary of the EMM  hits the screen edge of the 

camera, i.e. up-scaling; and 4) moving the camera farther from the 

document, i.e. down-scaling, respectively. We cropped the center 

square region of each captured image and normalized it to the size 

of 707×707. Figs. 7 (b)-(f),and (h)-(l) illustrate some exemplar 

query images from testing set-595 and testing set 540 respectively. 

In the following evaluation, we use the top3 accuracy, which 

indicates the rate that a query image is ranked within the top three 

positions, as our identification accuracy. 

4.2 Evaluation of our method 
Baseline. We used the bag-of-words approach as the “baseline” 

approach. We trained a vocabulary of 100k visual words using 

hierarchical k-means [15]. The training images consist of all the 

images from EMM-ICME2K and EMM-Oxford5K. 

Comparison. We then enhanced the baseline method with our 

approximate geometric verification. We tried four different 

configurations: 1) “G-BoW”, in which we only use the “AGGC” 

constraint; 2) “G-BoW + TC”, which compensates for the 

translation-caused errors before finding the qualified 

correspondences; 3) “G-BoW + AGV”, which applies both the 

“AGGC” constraint and the “injection” constraint when finding 

the qualified correspondences; and 4) “G-BoW + TC + AGV” 

which combines Configurations (2) and (3). In this experiment, 

the number of coarse-level grids n in (3) is set to 4×4=16 (we will 

discuss another experimental study for the effect of varying n in 

Section 4.3). 

We perform all the experiments with a single CPU on a 3.0GHz 

Core Duo desktop with 12G memory. Fig. 8 compares the above 

six approaches with respect to accuracy and runtime. Three key 

observations can be made from these results. First, applying the 

“injection” and “AGGC” constraints significantly improves the 

accuracy, which can be observed by comparing the results for “G-

BoW+AGV” to “baseline-BoW”. For the 100k+ dataset, the 

accuracy increases from 6% to 96.7% for the document images 

and from 22% to 94.3% for the natural images. Second, the 

accuracy and runtime improvements achieved by AGV are much 

more significant when combined with “G-BoW” than with 

“baseline-BoW”. The accuracy is 11% higher for both document 

images and natural images on the 100k+ dataset, if we compare 

the curves of “G-BoW+AGV” and “G-BoW”. However, the 

accuracy of “baseline+AGV” is only 2% higher for the document 

images and 11% higher for the natural images in comparison with 

the accuracy of “baseline”. For runtime comparison, the time 

increase changing from “G-BoW” to “G-BoW+AGV” is less than 

the time increase changing from “baseline” to “baseline+AGV” - 

159ms less for a document image and 54ms less for a natural 

image. These results further validate the claim made in Section3.3 



 

Table 2. Top3 Accuracy under different vocabularies. The 

vocabulary size is 100k and the dataset size is 100k+. 

VoB. / Testing Set Testing Set-540 Testing Set-595 

VoB-Doc-Oxb 

VoB-Doc-Dis 

VoB-Dis 

96.7% 

97.4% 

53.9% 

94.5% 

92.3% 

94.5% 

 

that too much noise in the correspondence set may greatly degrade 

the effectiveness of AGV.   Finally, translation compensation 

boosts the accuracy for both approaches. With translation 

compensation (“G-BoW+TC+AGV”), we can achieve the highest 

accuracy 96.7% for the document images and 94.5% for the 

natural images on the 100k+ dataset. 

4.3 Coarse Level Grids Number Selection 
The number of grids n in Formula (3) is a key parameter for the 

G-BoW matching and translation compensation, and affects the 

results of approximate geometric verification.  We tested the 

performance using the most comprehensive setting (“G-

BoW+TC+AGV”) with different n values. Using a hierarchical 

strategy with 32×32 grids as the finest resolution for AGV and 

any level above it for the G-BOW matching and translation 

compensation, there are 4 options for n: 2×2, 4×4, 8×8 and 16×16. 

Fig. 9 compares the effect of these four options on accuracy and 

runtime. For both document images and natural images, the 

results show that n=4×4 results in the highest accuracy. 

Furthermore, the runtime for n=4×4 is just slightly higher than 

that for n=2×2, and consistently lower than those of the other two 

options. 

4.4 Variants of Vocabularies 
The vocabulary should have sufficient descriptive ability to 

accurately distinguish a wide range of images. The descriptive 

ability of a vocabulary is determined by the set of training images. 

Therefore in this part we test the performance of our method using 

three vocabularies constructed from different training images: 1) 

VoB-Doc-Oxb, which uses EMM-ICME2K and EMM-Oxford5K 

as training images; 2) VoB-Doc-Dis, which uses EMM-ICME2K 

and 5k randomly selected images from EMM-Flickr200K as 

training images; 3) VoB-Dis, which uses 7k randomly selected 

images from EMM-Flickr200K as training images.  The size of all 

the three vocabularies is set to 100k and the accuracy and runtime 

are evaluated based on the “G-BoW+TC+AGV” approach. The 

results are summarized in Table 2. 
We made the following observations: 1) For testing set-540, there 

is an approximate 43% drop in accuracy when using the 

vocabulary VoB-Dis, which was trained solely based on natural 

images. This result indicates that in order to achieve high 

accuracy for certain types of images, images with a similar nature 

must be included in the training set. 2) For testing set-595, the 

accuracy remains consistent for all three vocabularies. This result 

implies that excluding the target images (i.e. source images used 

for testing) from the training set for constructing the vocabulary 

does not hurt the accuracy for certain types of images as long as 

there are sufficient training images of similar nature. This property 

is very important for real-world applications. 

5. CONCLUSION AND FUTURE WORK 
 We present a scalable EMM identification system which utilizes 

visual features within EMMs to link dynamic media with a static 

paper document via camera-phones. “Injection” and 

“Approximate Global Geometric Consistency” are two unique 

constraints for EMM identification. Taking into account these two 

constraints, we propose a novel image matching scheme, which 

significantly outperforms the baseline method. The success of our 

approach relies on three key steps. First, translation compensation, 

which roughly aligns indexed images with a query image, greatly 

reduces the translation-caused errors and lays the groundwork for 

the subsequent grid-based process. Second, by utilizing the 

“AGGC” constraint, the grid-bag-of-words matching, which 

places coarse grids over the image and finds matches that occur in 

a common grid, removes lots of unqualified matches at an early 

stage. Third, approximate geometric verification, which conducts 

correspondences refinement at a fine-grid level, effectively and 

efficiently enforces the “injection” constraint and further 

increases the accuracy. Moreover, the proposed hierarchical 

encoding/decoding strategy minimizes the computational and 

memory cost of online correspondences searching.   

Figure 7:  (a) and (f) are exemplar indexed natural image and document image, respectively. (b)-(f) and (h)-(l) are corresponding 

exemplar hand-captured query images from testing set-595  and testing set-540.    



 

Figure 8:  Performance on our dataset using 4×4 grids for G-BoW matching and 32×32 grids for AGV. (a) and (b) are Top3 Accuracy 

for  Test Set-540 and Test-Set-595 respectively. (c) and (d) are Time Cost for  Test Set-540 and Test-Set-595 respectively 

(a) (b)  (c)  (d)  

In this EMM application, there is a practical limit on the amount 

of rotation and scaling for the user-captured image with respect to 

the index target image. Utilization of this additional constraint can 

be investigated to further improve the performance and accuracy 

of EMM identification. In addition, global features which are 

robust to the restricted geometric changes and photometric 

changes can be investigated to address the scalability for handling 

datasets with millions or even billions of images. 
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Figure 9:  Performance on our dataset with different number of grids for G-BoW matching.  (a) and (b) are Top3 Accuracy for  Test 
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