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ABSTRACT

This paper presents a video acquisition system that can
learn automatic video capture from human’s camera
operations. Unlike a predefined camera control system,
this system can easily adapt to its environment changes
with users’ help. By collecting users’ camera-control
operations under various environments, the control system
can learn video capture from human, and use these
learned skills to operate its cameras when remote viewers
don’t, won’t, or can’t operate the system. Moreover, this
system allows remote viewers to control their own virtual
cameras instead of watching the same video produced by
a human operator or a fully automatic system. The online
learning algorithm and the camera management algorithm
are demonstrated using field data.

1. INTRODUCTION

Videoconferencing has been gradually adopted by general
public for watching meetings, presentations, and
performances remotely. To reduce the cost of capturing
meetings and presentations, engineers have constructed
various video acquisition systems. For instance, the
AT&T’s Automated Cameramen [3] tracked moving
objects based on the radial-profile difference between the
acquired image and the background image. The Bell
Core’s Auto-Auditorium [1] provided audiences a
“combination shot”, with the speaker placed in a picture-
in-picture box in the lower corner of the slide image when
the system could not determine automatically whether the
most important image should be of the speaker or of the
screen. In Cornell’s lecture capturing system [5], a video
alternating between two cameras helped the system to
produce more engaging presentations. The Microsoft’s
ICAM system [4] mimicked the structure of a video
production team via specific rules. There are three major
drawbacks of these predefined fully automatic camera
control systems.

First, these systems do not have sufficient bad-shot-
correction mechanisms. These fully automatic systems
can barely avoid bad shots based on state-of-the-art
audio/vision techniques. If a camera control system does
not allow remote viewers to correct the problem when a

bad shot happens, remote users may miss important
information during a meeting or conference.

Second, these systems force all remote users to watch
the same video stream without considering users’ various
preferences. This prevents remote users from following
different events in a meeting. For example, when the
camera for broadcasting focuses on the speaker of a
lecture, a remote user may want to check the white board.
If the system cannot let the remote user check the white
board, this user may get lost.

Third, system installers have to set a large number of
environment-specific parameters for these systems. If this
kind of predefined camera control system is set in a time
varying environment, such as a multifunctional room, it
will be difficult for the system to have good performance.

In this paper, we present a camera control system that
tries to attack these major problems, and our effort will
mainly focus on solving problem 3. In section 2, we
briefly introduce the camera hardware and the control
interface. In section 3, we describe the control strategy
and the learning approach. Experimental results on field
data are given in section 4. Conclusions are presented in
section 5.

2. CAMERA HARDWARE AND CONTROL
INTERFACE

Figure 1. The Camera Hardware Construction
To provide a high quality virtual camera to every remote
user, we construct the camera hardware by installing a
pan/tilt/zoom (PTZ) camera on top of a panoramic
camera. The hardware construction is shown in Figure 1.
With this construction, remote users may monitor the
entire camera operation environment with the panoramic
camera while they may also obtain details of an event with
the PTZ camera.

To obtain remote users’ opinions on controlling their
virtual cameras, we provide the interface shown in Figure
2 to remote users. With this interface, a remote user may



request close-up video by selecting his/her region of
interest in the overview window. When our video server
receives the selection information, the server will send the
user a close-up video of that region. This close-up video
may come from the PTZ camera or the high-resolution
panoramic camera depending on our camera management
strategy and all users’ requests.

Figure 2. Web-based Graphical Interface for Remote
Users to Control Their Virtual Camera

3. LEARNING CAMERA CONTROL FROM
USERS’ VIDEO REQUESTS

Conceptually, the ideal image received by the camera
system may be represented with ),,( tyxf , where x and y
are coordinates used by the panoramic image. Due to the
limitations of sensors, a practical system may only obtain

an approximation ),,(ˆ tyxf of the ideal signal ),,( tyxf . To
efficiently use available sensors, the system moves the
PTZ camera to maintain high quality of acquired signals.
Moreover, the system also includes video buffer to cache

the past image, Ttf −
ˆ , for future references when some

image regions do not change over a short period of time.

Let ),( tF xyω and ),(ˆ tF xyω be the spectrum representation

of ),,( tyxf and ),,(ˆ tyxf respectively, where xyω is the

rotational spatial frequency. Denote }{ iR as a set of non-

overlapping small regions, )|,( OtRp i as the probability

of viewing region-Ri details conditioned on environmental
observation O, and T as a short period of time between

video frames. The total distortion ],ˆ[ tTt ffD − between

users’ requested images and the real image might be
modeled with:
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This integration reflects the distortion between the
real image and the cached image, where the first term on
the right side reflects the distortion caused by
environmental changes, and the second term reflects the
distortion caused by environmental details. By sampling
region Ri at frequency )(tai and updating the cached

image, the expected distortion reduction is:
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Therefore the total distortion reduction (information gain)
over all requested images is proportional to:

iRc
i

i DOtRpD ,)|,( ∆⋅≈∆ � . (4)

To ensure video quality, the control strategy of our
system is to maximize the distortion reduction D∆ by
using proper cameras (i.e. the PTZ camera, the panoramic
camera, or no-updating) to update the cached image.
Denote (X,Y,Z), corresponding to pan/tilt/zoom, as the
best pose for the PTZ camera. (X,Y,Z) can be obtained
with

( )DZYX
zyx

∆=
),,(

maxarg),,( . (5)

When
iRcD ,∆ has a negative value, the system may choose

not to update region Ri for increasing D∆ .

3.1. Estimating the distortion reduction between the
real image and the cached image

Since the system cannot try all PTZ camera poses in
practice, it has to seek the optimal camera pose via
simulation before moving the PTZ camera. More
specifically, the system has to try the distortion reduction
equation with cutoff frequencies corresponding to various
camera poses, and select the optimal camera pose.

During computer simulation, accurate estimation of
equation (3) is difficult without sufficient camera
resolution. To compensate this problem, we have to use
image/video power spectrum models to assist the
evaluation of information gains corresponding to various
poses. According to Dong and Atick [2], if a system
captures object movements from distance zero to infinity,
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frequency, ωxy, according to m
xyω/1 and 1/1 −m

xyω
respectively, where m is around 2.3.

Based on these simple models and various camera
poses, the estimation of each distortion term may vary.
Due to space limit, we only give the estimation procedure
of the most general case. More specifically, we assume
that only the panoramic video is available for the
estimation. Let b be the spatial cutoff frequency of the
panoramic video. Since the panoramic video is available
for cache update at any time, we have )(tab i≤ , and

)( Ttab i −≤ . Let Es,i,t be the Ri-region AC-power between

spatial frequency 1 and b, Em,i,t be the Ri-region frame-
difference AC-power between spatial frequency 1 and b,
Jm,i,t be the Ri-region frame-difference power up to spatial

frequency b, and ),,(ˆ tyxfb acquired by the panoramic

camera be the band-limited representation of ),,( tyxf .

The estimation of Es,i,t, Em,i,t, and Jm,i,t are very
straightforward. For example,

dxdytyxftyxfJ
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Es,i,t, Em,i,t can be estimated in a similar way. With these
values, terms for

iRcD ,∆ may be obtained with:
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3.2. Weighting distortions according to users’ requests

When multiple users request the cached image, the above
distortion should be weighted according to users’
requests. In this paper, users’ requests to different
portions of an image are modeled with a probability
function )|( ORp it . This gives rise to the form of a Bayes

estimator. )|( ORp it may be estimated directly based on

users’ requests. Suppose there are ni users requesting to
view region Ri during the time period from t to t+T when
the observation O is presented, and p and O do not change
much during this short period, )|( ORp it may be

estimated with
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When users’ requests are not available, the estimation
of )|( ORp it may become a problem. This problem may

be tackled by using the system’s past experience of users’
requests. More specifically, if we assume that the

probability of selecting a region does not depend on time
t, the probability may be estimated with
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Signals received by various regions of an image
generally come from various sources (i.e. objects), such as
a presenter or an audience member. In a tele-
conferencing environment, it is reasonable to assume that
signals from different sources are independent. On the
other hand, it is also reasonable to assume that a human’s
view selection separates various sources well into two
categories (i.e. proper segmentation). Based on these
assumptions, the feature vector O may be separated into
independent feature vectors Oi and Oother, where Oi is the
feature vector based on the data in Ri and Oother is the
feature vector based on the data outside of Ri. Moreover,
we may further assume that Ri and Oother are independent.
With these assumptions, )|( ORp i may be estimated with
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The observation Oi may be further separated into
“independent” features { }ni oooO ,,, 21 �= as [6,7]

suggested. With these independent features, )|( ORp i may

be estimated with
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where )( iRp is the probability of selecting region Ri, and

)|( ij Rop is the probability of observing oj in Ri when Ri is

selected. Probabilities in this equation may be estimated
online. With )|( ORp i available, it is straightforward to

compute equation (5) for the optimal PTZ camera pose.

4. EXPERIMENTS

In this study, we deployed our system in a conference
room, and grabbed one image per minute (T=1) with the
panoramic camera during more than 10 short
presentations. The total number of images is 120. In
these 120 images, we picked 22 images with a uniform 5-
minute period and asked 14 subjects to mark each image
with regions that they want to watch in the close-up view.
These data are then used to estimate )|( ORp i around

these selected time instances. With these data, we can
also estimated )( iRp as that shown in Figure 3, where

whiter points correspond to higher )( iRp values.

Many image features may be considered as features
from o1 to on. Figure 4. shows the pdf ratio,

)(/)|( jij opRop , variation when we select the frame

difference as a feature. In this figure, the horizontal axis
corresponds to the absolute value of frame difference, and



the vertical axis corresponds to the pdf ratio. If the
selected feature is closely related to users’ view
selections, the PDF function will reveal one or multiple
peaks. Otherwise, the function will be flat.

Figure 3. Estimation of )( iRp (a) A typical panoramic

shot that reveals the conference room arrangements.
(b) Users’ preferences to various regions )( iRp .

Figure 4. The pdf ratio variation when the absolute
value of frame difference is chosen as a feature.

(a)

(b)
Figure 5. PTZ-camera pose selection (dotted black
box) and the maximum distortion reductions
corresponding to various zoom levels.

Due to space limit, we only demonstrate the PTZ
camera control with a constraint experiment. According
to given equations, the system can move the PTZ camera
to form a very high-resolution image when the
environment is static. Assume the cached image reached
its highest resolution at time t-T and the panoramic image
at t is shown in Figure 5 (a), the system will choose the
dotted black box shown in Figure 5 (a) as the PTZ camera
view to maximize the overall distortion reduction. Figure
5 (b) shows the maximum distortion reductions
corresponding to various zoom levels (stars in the figure).
Since we cut the image into small regions for fast
optimization, the zoom level corresponds to a set of
discrete values. The horizontal axis of Figure 5 (b)
reflects the spatial frequency associated with various
zoom levels, where the number tells us the number of PTZ
camera sampling points corresponding to 12 pixels in the
panoramic view.

5. CONCLUSIONS

By investigating a multi-resolution and multi-user camera
management system within a video-distortion optimization
framework, we are convinced that users’ camera-control
inputs are useful for teaching a computer system to take
reasonable shots in a videoconferencing environment. We
also show that the best PTZ camera pose can be found by
using natural image/video statistical models proposed by
some neural scientists.
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