Recurrent Neural Networks for Customer Purchase Prediction on Twitter


The abundance of data posted to Twitter enables companies to extract useful information, such as Twitter users who are dissatisfied with a product. We endeavor to determine which Twitter users are potential customers for companies and would be receptive to product recommendations through the language they use in tweets after mentioning a product of interest. With Twitter’s API, we collected tweets from users who tweeted about mobile devices or cameras. An expert annotator determined whether each tweet was relevant to customer purchase behavior and
whether a user, based on their tweets, eventually bought the product. For the relevance task, among four models, a feed-forward neural network yielded
the best cross-validation accuracy of over 80% per product. For customer purchase prediction of a product, we observed improved performance with the use of sequential input of tweets to recurrent models, with an LSTM model being best; we also observed the use of relevance predictions in our model to be more effective with less powerful RNNs and on more difficult tasks.